

Page 1

mcsMQTT

HomeSeer HS3/HS4 Plug-in

HomeSeer HS4 Plug-in

Michael McSharry

February 7, 2025

Version 6.20.2.x

Page 2

Contents

1 Introduction .. 26

2 Installation .. 26

3 Environment & Architecture ... 27

3.1 MQTT Environment ... 27

3.2 mcsMQTT Plug-in Architecture ... 27

4 Quick Start ... 29

4.1 Q&A ... 29

4.1.1 How do I get started with MQTT... 29

4.1.2 How do I view the MQTT Topic Payload in HS Device .. 30

4.1.3 How do I setup a Command/Response Device so HS can control MQTT item and show its

status 30

4.1.4 How do I control an existing HS Device with a MQTT Topic ... 30

4.1.5 I want to subscribe to a Topic, but the Topic has not yet been published through the

MQTT Broker ... 31

4.1.6 The Device Management UI is not showing what I want for MQTT Devices, how do I

change it 31

4.1.7 I see Dim for HS Device Status, how do I remove or change ‘Dim’ 31

4.1.8 Payload numbers contains periods for decimal. I need them to be comma 31

4.1.9 How do I know if I am communicating with MQTT broker ... 32

4.1.10 Where do I look when things go wrong .. 32

4.1.11 How do I know if a client has stopped publishing MQTT messages 32

4.1.12 How do I publish a MQTT message when some event has been triggered in HS 32

4.1.13 How do I chart the time history of a topic’s payload .. 32

4.1.14 How do I chart the time history of a HS device .. 33

4.1.15 How do I change Payload temperature from Centigrade to Fahrenheit 33

4.1.16 My MQTT payload is wattage rate, but I want HS to provide daily wattage use 33

4.1.17 How do I easily initialize an IOT device with one-tiime configuration messages 33

Page 3

4.1.18 I have been experimenting and have topics that will never be used again. How do I

permanently remove them ... 33

4.1.19 How do I group devices in HS Device Management display ... 34

4.1.20 How do I automatically associate sets of MQTT topics to non-plugin devices 34

4.1.21 How do I automatically create HS devices based upon MQTT Topics 36

4.1.22 How do I publish HS device changes without explicit association to MQTT topics 39

4.1.23 How do I setup device with different status and control payloads 40

4.1.24 How do I conveniently control a colored light .. 40

4.1.25 How do I change the subscribe Topic that is associated with a HS Device 44

4.1.26 How do I remove Topics that have become obsolete .. 45

4.1.27 How do I update HS Device with minimum resource utilization .. 46

4.1.28 How do I associate multiple topics to the same HS Device .. 46

4.1.29 How do I use multiple Topics to change status of single HS Device 47

4.1.30 How do I create a device that has both slider and On/Off/Last button controls 49

4.1.31 How do I setup MQTT Associations for an existing ZWave Dimmer 51

4.1.32 How do I create a device for blinds or shutters with single feature control buttons 54

4.1.33 How do I connect to multiple MQTT Brokers ... 56

4.1.34 How to record changes to HS Log ... 58

4.1.35 How to view CSV payloads in separate HS Devices .. 59

4.1.36 How do I create unique HS devices when the payload content contains device

identification ... 60

4.1.37 How do I store picture contained in MQTT Payload ... 62

4.1.38 How do I publish different payload formats depending upon the HS control value 63

4.1.39 Data is flooding my system, what can I do ... 64

4.1.40 Can I use the ZigbeePlus MQTT Broker with mcsMQTT ... 64

4.1.41 How do I send multiple messages such as cycle a widget off and on 65

4.2 Default Settings for mcsMQTT .. 66

4.3 Automatic Setup of Device to Topic Relationship .. 66

4.4 Manual Setup of Device to Topic Relationship ... 68

4.5 Leveraging Multiple mcsMQTT Browser Pages... 68

Page 4

5 Sending MQTT Messages .. 69

5.1 Send MQTT via HS Device Change .. 73

5.2 Send User-Customized Topics and Payloads .. 75

5.3 Send MQTT via Event Action ... 80

5.4 Send MQTT via Script .. 82

5.5 Send Status on MQTT Request ... 83

5.6 Sending Periodic Status ... 84

5.7 Sending Configuration / Setup Messages ... 84

5.8 Sending Messages to LED Messaging Sign .. 85

5.8.1 Messaging Sign Use Cases ... 87

5.9 Sending MQTT Messages via HTTP/Browser Parameters... 89

5.9.1 Send a Topic with Payload .. 89

5.9.2 Send a Voice Monkey request for Alexa ... 89

5.9.3 Send a WLED Playlist request.. 89

5.10 Monitoring Ability to Send and Receive via Broker .. 90

6 Receiving MQTT Topics ... 91

6.1 Receive MQTT Payload in HS Device... 94

6.2 Payload Transformations .. 95

6.3 Payload Numeric Transformations ... 99

6.4 Payload OtherTransformations ... 100

6.5 Payload Storage .. 106

6.5.1 Plugin Device Features .. 106

6.5.2 Non-Plugin Device Features .. 108

6.6 Controlling HS Device via MQTT Topic .. 108

6.7 MQTT Receive Event Triggers ... 109

6.8 Topic Wildcards ... 110

6.9 HomeAsistant Discovery ... 110

6.1 Tasmota Discovery .. 111

6.2 Homie Discovery ... 112

6.3 Scripting Callback .. 112

6.4 Scripting Receive ... 113

7 Display Filtering/Sorting and Scripting Automation ... 114

Page 5

7.1 Display Filtering and Sorting ... 114

7.2 Scripting Automation .. 117

7.2.1 Edit of mcsMQTT Properties ... 117

7.2.2 Process Management Scripting Helpers ... 122

7.2.3 Custom Database Scripting ... 127

7.2.4 PluginFunction Reference Methods .. 130

8 History ... 131

8.1 Long Term Storage in Network Database (InfluxDB, mySQL, SQL Server) 132

8.2 Short Term Storage in SQLite .. 134

8.1 Viewing History Data ... 135

9 Charts .. 138

9.1 Charts with HS Touch .. 143

10 mcsMQTT Self Signed Certificate Support .. 146

10.1 Part I. SSL/TLS Communications ... 146

10.1.1 Why encrypt your IOT/MQTT Network ... 146

10.1.2 SSL Communications Overview ... 146

10.1.3 Root Signed and Self-Signed certificates .. 147

10.1.4 SSL Options that NEED CLOSURE .. 150

10.2 Installing SSL support on the mcsMQTT Plug-in ... 151

10.2.1 SSL/TLS Certificate creation: ... 151

10.2.2 Software/Tools: ... 152

10.2.3 Certificate Creation ... 152

10.3 Mosquitto Broker configuration for SSL ... 158

11 Local .. 161

11.1 IP Relay .. 161

11.2 Local HVAC .. 166

11.2.1 Intesis .. 168

11.2.2 Daikin .. 168

11.2.3 Venstar .. 170

11.2.4 Midea .. 172

11.2.5 Polyaire AirTouch .. 174

Page 6

11.3 LED .. 176

11.3.1 WLED ... 176

11.3.2 Nanoleaf .. 179

11.4 Serial (IP Serial and COM Serial) ... 182

11.5 Broadlink / BestCon RM Pro and Mini .. 185

11.5.1 Putting Broadlink Unit on Local Network ... 185

11.5.2 Use of Broadlink Unit .. 187

11.5.3 Broadlink MQTT and Event Interface .. 193

11.5.4 Broadlink Sensors .. 194

11.6 Bluetooth .. 195

11.6.1 Sensors and Actuators .. 195

11.6.2 Beacon ... 198

11.6.3 Espresense .. 203

11.7 GW1000 .. 210

11.8 Epson Projector ESC/VP.net .. 214

11.9 HS and Plugin Monitoring with Enable, Disable and Restart Controls 218

11.10 Hunter Douglas PowerView Gen2 & Gen3 ... 221

11.11 Command Terminal ... 223

11.12 Speaker.. 225

11.13 Jacuzzi Spa ... 227

11.14 Gecko In-Touch Spa ... 228

11.15 Roborock Vacuum ... 230

11.16 TP-Link Kasa/Tapo Plugs, Lights, Switches etc. ... 234

11.17 Shelly Wall Display .. 238

12 Cloud ... 245

12.1 URL .. 245

12.1.1 Overview ... 245

12.1.2 URL Base and Endpoints ... 249

12.1.3 oAuth2 Authentication ... 251

12.2 Voice Monkey ... 253

12.3 Yolink ... 257

Page 7

12.4 Geofence ... 261

12.5 Sense Energy ... 262

12.6 Hubspace ... 265

12.7 Switchbot .. 269

12.7.1 Introduction .. 269

12.7.2 Setup ... 269

12.7.3 Switchbot Devices ... 271

12.7.4 Switchbot Infra-Red .. 273

12.8 Rheem EcoNet ... 277

12.9 Flume Water ... 280

12.9.1 Water Use Queries .. 281

12.9.2 Notifications .. 282

12.10 Emporia Energy Vue .. 286

12.11 Coulisse B.V. Motion-Blinds.com Blinds Control .. 294

12.12 Thermostats .. 298

12.12.1 NuHeat Thermostat .. 298

12.12.2 Nexia / Trane / American Standard Thermostat ... 301

12.12.3 Carrier Infinity / Bryant Evolution / Ion .. 303

12.13 Tank Utility .. 308

12.14 Abode Security .. 312

12.15 Irrigation .. 316

12.15.1 Orbit B-Hyve Irrigation .. 316

12.15.2 Hunter Hydrawise Irrigation ... 319

12.16 Solar Panel Integration .. 324

12.16.1 Solcast ... 325

12.16.2 Solar Assistant ... 326

12.17 Pool ... 330

12.17.1 Hayward Omnilogic Pool ... 330

12.18 Govee Lighting + .. 333

13 Interactive ... 336

14 StreetMap (HS4 Only) ... 338

Page 8

14.1 OwnTracks Setup .. 338

14.2 Street Map Browser Page (HS4 Only) ... 339

14.3 Geofence Here-Away Tracking .. 341

15 Bluetooth Low Energy (BLE) Page (HS3 Only) ... 343

15.1 BLE Page Description... 343

15.2 Getting Started with BLE ... 344

15.2.1 Tasmota Configuration.. 346

15.3 Tips .. 347

15.4 Setup Tab .. 348

15.4.1 Page Viewing Options ... 348

15.4.2 Configuration Parameters Table ... 349

15.4.3 Beacons Locations Table ... 351

15.4.4 Scanner Location Table ... 353

15.5 Location Tab .. 354

15.1 Distance Tab .. 355

15.2 24 Hour Tab ... 358

16 Performance Considerations .. 360

16.1 HS Event Callbacks .. 360

16.2 Express Mode .. 360

16.3 Subscription Topics ... 361

16.4 Plug-in Startup .. 364

16.5 Browser Page Rendering ... 365

17 Reference Tool Tips ... 366

17.1 MQTT Page Association Tab .. 366

17.1.1 Filters to Restrict Number of Displayed Rows in Association Table 367

17.1.2 Associations Build/Display Control ... 368

17.1.3 Association Table Header .. 368

17.2 MQTT Page Edit Tab .. 372

17.2.1 Start Reference ... 372

17.2.2 Publish (Outbound) ... 372

17.2.3 Subscription (Inbound).. 375

Page 9

17.3 MQTT Page Client Tab ... 384

17.3.2 Inbound (Subscription) Management ... 385

17.3.3 Outbound (Publish) Management .. 388

17.4 MQTT Page Broker Tab ... 390

17.5 MQTT Page General Tab ... 393

17.5.1 Beta Updates ... 395

17.5.2 Debug .. 395

17.5.3 Topic Volume Management .. 396

17.5.4 Backup ... 396

17.6 MQTT Page Sign Popup ... 399

17.6.1 Sign Display Row ... 399

17.6.2 Message Duration (minutes) ... 399

17.6.3 Text Color RRGGBB ... 399

17.6.4 Default Text Payload ... 399

17.6.5 JPEG Image Scaling % .. 399

17.7 MQTT Page Edit Popup ... 400

17.8 MQTT Page PubList/Sign Tab .. 402

17.8.1 Publication List .. 402

17.8.2 Sign Use Setup ... 403

17.9 MQTT Page History Tab .. 405

17.9.1 Long Term History (InfluxDB, mySQL and MS SQL Server) ... 405

17.9.2 History for Near Term Analysis (SQLite) ... 406

17.9.3 Near Term History ... 409

17.9.4 All History .. 409

17.9.5 Filters History by Category, Topic and Payload... 409

17.9.6 History Table Build/Display Control .. 410

17.9.7 History Table Header .. 410

17.10 MQTT Page Chart Tab ... 411

17.10.1 Chart Definition Load / Save ... 412

17.10.2 Date/Time Range Selection ... 413

Page 10

17.10.3 Chart Selections .. 413

17.10.4 Topic/Item Selection ... 413

17.10.5 Chart Y Axis Scaling ... 413

17.10.6 Chart Build/Display Control .. 414

17.11 BLE Setup Page (HS3) .. 414

17.11.1 Page Viewing Options ... 414

17.11.2 Beacon Locations with Last 24 Hours Data ... 414

17.11.3 Scanner Locations ... 415

17.11.4 Configuration Parameters ... 415

17.12 Local Page.. 417

17.12.1 IP 8 Channel Relay/Input ... 417

17.12.2 Local HVAC (Intesis/Daikin/Venstar/Midea/AirTouch) ... 417

17.12.3 WLED ... 418

17.12.4 Serial .. 419

17.12.5 Bluetooth for Sensor and Actuators ... 419

17.12.6 Bluetooth Beacon for Home-Away ... 420

17.12.7 Bluetooth using Espresense for Room Localizaation .. 421

17.12.8 Broadlink IR/RF.. 422

17.12.9 GW1000 .. 424

17.12.10 Epson ... 424

17.12.11 Resources .. 424

17.12.12 Hunter Douglas PowerView Gen3... 425

17.12.13 Command Terminal ... 425

17.12.14 Speaker.. 425

17.12.15 Spa ... 425

17.12.16 Gecko InTouch Parameters ... 425

17.12.17 Roborock Parameters and Control.. 426

17.12.18 TP-Link Kasa Tapo.. 427

17.13 Cloud Page .. 428

Page 11

17.13.1 URL .. 428

17.13.1 YoLink .. 428

17.13.2 Voice Monkey ... 429

17.13.3 Geofence ... 429

17.13.4 Sense Energy ... 429

17.13.5 Hubspace ... 430

17.13.6 Switchbot .. 430

17.13.7 Tank Utility Connect Parameters .. 430

17.13.8 Abode .. 431

17.13.9 Orbit B-Hyve .. 431

17.13.10 Hunter Hydrawise ... 431

17.13.11 Solar .. 432

17.13.12 Rheem EcoNet ... 432

17.13.13 Thermostats NuHeat ... 433

17.13.14 Thermostats Nexia/Trane/American Standard ... 433

17.13.15 Thermostats Carrier/Bryant/Ion ... 433

17.13.16 Pool ... 434

17.13.17 Govee .. 434

17.14 Interactive Page .. 436

17.14.1 Expression ... 436

17.14.2 Send MQTT Message .. 436

17.14.3 Run HS Script Command or Expression ... 436

17.14.4 Run HS Script ... 436

18 Zigbee2MQTT .. 437

18.1 Zigbee2mqtt Firmware ... 438

18.2 Zigbee2MQTT on Windows ... 442

18.3 Zigbee Sniffer .. 443

18.4 New Zigbee Devices .. 444

19 KNX-MQTT-Bridge ... 447

20 Applications ... 453

Page 12

20.1 Applications with Tasmota .. 453

20.2 Sonoff Basic (Original Version) Firmware Upload ... 453

20.3 WiFi Garage Door Control ... 455

20.3.1 Original GDO Tasmota 5.9.1 .. 455

20.3.2 Updated GDO Tasmota 8.4.0.3 ... 462

20.4 Pulse Counter .. 464

20.5 Low Volume Water Flow ... 466

20.6 Multiple Light Control on Single Switch .. 469

20.7 Failback Irrigation Controller .. 475

20.8 Doppler Radar Motion Sensor .. 486

20.8.1 Warehouse Motion Light Switch ... 486

20.8.2 RCWL-0516 (Automotive Proximity) ... 495

20.8.3 HLK-LD2410C Human Presence .. 498

20.8.4 DF Robot SEN0395 mm Wave Radar Detection Sensor .. 508

20.9 InfraRed Motion Direction Sensor .. 512

20.9.1 Motion Direction Version 2 ... 521

20.10 Mouse Trap Notification ... 525

20.10.1 Mouse Hotel Version 2.. 528

20.11 Notification Frame .. 530

20.12 CID Robocall Blocker ... 538

20.13 Reflash with Tasmota or Other Favorite Firmware .. 545

20.13.1 Tuya Version 1 ... 545

20.13.2 Tuya Version 2 ... 546

20.13.3 WS-1 Smart Plug.. 547

20.13.4 Luntak US101/US/102/US103/X6 WiFi Plug ... 549

20.13.5 EVA LOGIK Smartplug .. 551

20.13.6 WS212 WiFi Dual Plug with Energy Monitoring .. 553

20.13.7 NX-SP201 Slitinto Dual Energy Monitoring Plug ... 557

20.13.8 BN-LINK BNC-60/U133TJ Energy Monitor Plug (BL0937).. 559

20.13.9 Wheswell USB Power / Mains Power Wifi Power Strip with Surge Protection 565

Page 13

20.13.1 JINVOO Water Shutoff Valve .. 569

20.13.2 Switchbot Mini Plug .. 574

20.14 Closet Door Light Control and Monitor ... 577

20.15 Fake TV .. 582

20.16 Bluetooth Low Energy Scanner ... 585

20.16.1 ESP32 Beacon Tracking ... 585

20.16.2 Beacon Location Algorithm ... 585

20.16.3 BLE Scanning & Reporting ... 586

20.16.4 Signal Processing Filters .. 587

20.16.5 Beacon Management .. 588

20.16.6 BLE on Raspberry Pi .. 598

20.16.7 Prototype .. 605

20.17 RFID ... 619

20.17.1 CheaperRFID ... 619

20.17.2 Cheapest RFID ... 621

20.18 RF Transmitter via QIACHIP .. 632

20.19 RFID-RC522 ... 635

20.20 LED Matrix Sign ... 639

20.20.1 LED Sign Construction ... 639

20.20.2 Led Sign API Details ... 643

20.20.3 Led Sign Configuration .. 646

20.20.4 LED Sign Usage .. 651

20.21 Greenhouse Sensor and Control ... 657

20.21.1 Sonoff 4CH Pro .. 659

20.21.2 Sonoff Basic ... 661

20.21.3 BN-Link Power Plug ... 663

20.22 Solar Ground Heater ... 664

20.23 Mail Delivery Notification via LoRa ... 672

20.24 Alexa Controlled IR .. 681

20.25 Sonoff RF and Zigbee Bridges .. 691

Page 14

20.25.1 Sonoff RF Bridge .. 691

20.25.2 Sonoff Zigbee Bridge ... 694

20.26 Carbon Monoxide Detector .. 697

20.27 Bluetooth Button for RF Control ... 703

21 SDR and RTL-433 ... 706

22 Pentair Pool Controller Integration... 712

23 IP Relay – Ethernet, WiFi, RS-485, CAN (Dingtian) .. 740

24 WLED Support ... 743

25 Plex Integration ... 750

Page 15

List of Figures

Figure 1 Wildcard Topic Setup .. 35
Figure 2 Auto-Association (Opt-out) Setup Example .. 38
Figure 3 Publish Without Association ... 39
Figure 4 HSB UI in HS .. 41
Figure 5 Color Bulb Parameter Mapping .. 43
Figure 6 HS Device Setup for Color Control .. 43
Figure 7 HS Color Picker Control ... 44
Figure 8 Association of multiple Topics to same HS Device ... 47
Figure 9 Setup of Multi-Control Feature ... 50
Figure 10 Slider with Buttons Control ... 50
Figure 11 Zwave Dimmer Control and Status Setup ... 53
Figure 12 Topic Association for Shutter - Blinds ... 54
Figure 13 Shades - Blinds VSP Setup ... 55
Figure 14 Shutter - Blinds HS Device and Feature .. 56
Figure 15 Multiple Broker Setup ... 57
Figure 16 Broker Identification for Received Topics ... 57
Figure 17 Broker Selection for Non-Plug-in Devices ... 58
Figure 18 HS Log of MQTT-based changes .. 59
Figure 19 CSV type Payload Selection ... 59
Figure 20 CSV Type HS Device Creation .. 59
Figure 21 Setup of CSV Publish CSV topics.. 60
Figure 22 Devices for CSV Control Type with Publish topic .. 60
Figure 23 Using Payload Key to Achieve Indepenent Devices .. 61
Figure 24 Elevate JSON key with Wildcard ... 62
Figure 25 Control/Status UI selection for a jpg image .. 62
Figure 26 HS4 Device with two jpg File Topics .. 63
Figure 27 Non-Plug-in Device Association .. 69
Figure 28 Non-Plug-in Device Manual Setup .. 70
Figure 29 Messaging Sign Properties .. 71
Figure 30 Plug-in Device Subscription Association ... 72
Figure 31 Plug-in Device Publish Setup ... 73
Figure 32 Example of Controlling a mcsMQTT Device .. 75
Figure 33 MQTT Event Action ... 80
Figure 34 Substitution Variables in Event Action .. 81
Figure 35 Send MQTT Publication List Event Action ... 81
Figure 36 Play Voice Monkey Routine .. 82
Figure 37 Publication List to Setup a Lora Frequency ... 85
Figure 38 Control/Status UI setup in Device Management to Support Sign Type 85
Figure 39 MQTT Broker Connection Event Trigger ... 90
Figure 40 Client Tab Inbound and Outbound Setup Options ... 94
Figure 41 Base, Rate, and Accumulation Device Associations .. 99

Page 16

Figure 42 Edit of Status for Numeric Devices ... 100
Figure 43 Transition Rate Ramp Contorl/Status UI ... 106
Figure 44 Override to Store String rather than Value ... 107
Figure 45 mcsMQTT Devices Mapping to Specific MQTT Topics .. 109
Figure 46 MQTT Receive Event Triggers ... 110
Figure 47 Tasmota Discovery Device Creation Examples ... 112
Figure 48 Association Table Filter Usage .. 115
Figure 49 Topic Filter Setup .. 116
Figure 50 mcsMonitor Config.. 122
Figure 51 Hitory Data Collection Setup ... 131
Figure 52 Database Storage Global Settings ... 133
Figure 53 Selection of HS Devices/Features for Recording in Long Term Database 133
Figure 54 History Filter Selection and Device Display ... 136
Figure 55 MQTT Topic History Display .. 137
Figure 56 Chart Setup ... 139
Figure 57 Chart with Line Legend ... 140
Figure 58 Chart Display with VSP Legend ... 141
Figure 59 HS Touch Setup to Show Chart ... 144
Figure 60 Event to Refresh Chart Every 15 Seconds ... 144
Figure 61 8 Channel Relay / 8 Channel Digital Input IP Network Module .. 161
Figure 62 Local Page Setup for 8 Channel Relay/Input and YoLlink Devices .. 164
Figure 63 Local Page Psuedo-Topic for 8 Channel Relay/Input Module ... 164
Figure 64 HS4 Devices View for Relay/Input Module ... 165
Figure 65 Daikin/Intesis/Venstar Unit IP Address Entry ... 166
Figure 66 Default Daikin/Intesis HS Devices ... 167
Figure 67 Daikin Additional Parameters ... 168
Figure 68 Venstar Integration Setup and HS Devices ... 171
Figure 69 Midea Integration Setup and HS Devices.. 173
Figure 70 AirTouch Setup .. 174
Figure 71 AirTouch HS Device and Features ... 175
Figure 72 WLED Segment and Playlist Setup .. 177
Figure 73 WLED Device and Features ... 178
Figure 74 Name WLED Presets .. 178
Figure 75 Nanoleaf Setup .. 180
Figure 76 Nanoleaf Device and Features .. 181
Figure 77 Serial Communications Setup ... 182
Figure 78 Serial Port HS Device ... 183
Figure 79 Jacuzzi Auto Device Creation .. 184
Figure 80 Take Broadlink Device out of Cloud .. 186
Figure 81 Broadlink Unit Discovery and IP Address .. 187
Figure 82 Broadlink Use Operational Mode Selections .. 188
Figure 83 Building of Broadlink Appliance/Code Library .. 189
Figure 84 Sample Pronto IR Code ... 190
Figure 85 Broadlink VSP Oriented Representation ... 191

Page 17

Figure 86 Broadlink Feature-Oriented Representation .. 191
Figure 87 Assignment of Appliance & Code to HS Feature ... 192
Figure 88 Broadlink Control Event Action ... 194
Figure 89 HS Devices for Broadlink Sensors .. 194
Figure 90 Bluetooth Sensor and Actuator Setup .. 196
Figure 91 Bluetooth Devices in Association Table .. 197
Figure 92 Shelly Bluetooth Door Window Sensor ... 198
Figure 93 Bluetooth Beacon and Interface ... 198
Figure 94 Beacon Tab Settings .. 199
Figure 95 BLE Beacon in Association Table ... 200
Figure 96 Beacon Status in HS .. 200
Figure 97 HS3 BLE Application Mode Selection .. 201
Figure 98 Beacon Parameter Edit ... 202
Figure 99 Espresense Status Reporting in HS Device Features ... 204
Figure 100 Espresense Configuration in mcsMQTT .. 205
Figure 101 Espresense Distance - Time Matrix ... 206
Figure 102 Suggested Espresense ESP32 Setup .. 207
Figure 103 Espresense JSON Data in Association Tab .. 209
Figure 104 Espresence Room vs. Distance Visualization .. 209
Figure 105 GW1000 RF-WiFi Gateway .. 210
Figure 106 WS View Setup for GS1000 ... 211
Figure 107 GW1000 mcsMQTT Setup ... 212
Figure 108 GW1000 Ecowitt/Ambient Sensors Viewed by HS ... 213
Figure 109 Epson Projector Setup ... 214
Figure 110 Epson Project Default HS Device and Features ... 215
Figure 111 Augmenting Epson Command/Device List .. 217
Figure 112 HS Epson Device Features after Augmentation .. 217
Figure 113 Computer Resource Monitor Selection .. 218
Figure 114 HS Pseudo-Topic for Monitor and Control of HS and Plugins ... 219
Figure 115 HS Device Features to Monitor and Control HS and Plugins .. 220
Figure 116 Hunter Douglas PowerView Setup .. 221
Figure 117 Hunter Douglas PowerView Gen3 HS Features ... 222
Figure 118 Hunter Douglas PowerView Gen2 HS Features .. 222
Figure 119 KEF Speaker Setup... 225
Figure 120 KEF HS Device and Features .. 226
Figure 121 Jacuzzi Hot Tub (alternate setup) ... 227
Figure 122 Gecko In-Touch Spa Setup .. 228
Figure 123 Gecko In-Touch HS Device and Features .. 229
Figure 124 Roborock Setup ... 231
Figure 125 Roborock HS Device and Features .. 231
Figure 126 Roborock Timer Specification ... 232
Figure 127 Roborock Timer HS Features .. 233
Figure 128 TP-Link Setup... 236
Figure 129 TP-Link HS Device and Features .. 237

Page 18

Figure 130 Wall Display Online status and Sensors HS Features .. 238
Figure 131 Shelly Wall Display Thermostat HS Features .. 239
Figure 132 Shelly Wall Display Media HS Features ... 239
Figure 133 Shelly Wall Display Panels Display .. 242
Figure 134 Wall Display Action Setup ... 243
Figure 135 Sites for polling JSON data via HTTP ... 246
Figure 136 REST and UDP HS Device Interface ... 248
Figure 137 JSON Topics in Association Tab ... 249
Figure 138 Listening Sockets Script Option ... 252
Figure 139 Voice Monkey Routines Seteup .. 254
Figure 140 Alexa App Edit Routine for Voice Monkey .. 255
Figure 141 Voice Money Token Setup .. 256
Figure 142 YoLink Device QR Code Entry .. 258
Figure 143 YoLink oAuth2 Authoriztion Screen .. 259
Figure 144 Auto-created YoLink Device and Features .. 260
Figure 145 YoLink Report Data ... 260
Figure 146 Geofence Locations Setup .. 261
Figure 147 Sense Energy Setup ... 263
Figure 148 Sense Energy HS Devices and Features ... 263
Figure 149 Sense Energy Topic Endpoints .. 264
Figure 150 Sense Energy Trend Chart ... 264
Figure 151 Hubspace Products ... 265
Figure 152 Hubspace Integration Setup ... 266
Figure 153 Hubspace Product Data as MQTT pseudo-Topics ... 267
Figure 154 Hubspace Auto-Created HS Device and Features ... 268
Figure 155 Switchbot Setup .. 270
Figure 156 Switchbot Local vs. Cloud Control ... 270
Figure 157 Sample Switchbot Devices and Features .. 272
Figure 158 Switchbot Pseudo-Topics .. 273
Figure 159 Switchbot IR Appliance Devices .. 273
Figure 160 Switchbot Custom IR Code Definition ... 274
Figure 161 Switchbot Custom IR Codes Setup on Edit Tab ... 275
Figure 162 Switchbot IR Control via Buttons .. 275
Figure 163 Rheem EcoNet Setup .. 277
Figure 164 EcoNet MQTT Report Snapshot on Association Tab ... 278
Figure 165 EcoNet Water Heater Device and Features .. 279
Figure 166 Elevate Flume JSON Key 'type' to Provide Uniqueness of Notifications 283
Figure 167 Emporia Hub and Circuit Clamps .. 286
Figure 168 Emporia Vue mcsMQTT Setup ... 288
Figure 169 Emporia Usage as HS Device Features .. 289
Figure 170 Emporia Outlet Topic .. 291
Figure 171 Emporia Outlet Publist Endpoint .. 291
Figure 172 Emporia Outlet Edits ... 293
Figure 173 Setup for Coulisse B.V. Blinds ... 294

Page 19

Figure 174 Coulisse B.V. Blinds HS Device and Features .. 295
Figure 175 Coulisse B.V. Association Table ... 296
Figure 176 NuHeat Thermostat .. 298
Figure 177 NuHeat Thermostat Setup .. 299
Figure 178 NuHeat Thermostat Device(s) and Features ... 300
Figure 179 Trane Thermostat ... 301
Figure 180 Nexia / Trane / American Standard Thermostat Setup .. 302
Figure 181 Nexia HS Devices ... 302
Figure 182 Carrier Thermostat Setup ... 305
Figure 183 Launching Python via a Bash Script ... 306
Figure 184 Carrier Thermostat HS Device and Features ... 307
Figure 185 Tank Utility Setup .. 310
Figure 186 Tank Utility Association Table Entry ... 310
Figure 187 Tank Utility Measurement Chart .. 311
Figure 188 Tank Utility HS Device and Features ... 311
Figure 189 Abode Setup Parameters .. 313
Figure 190 Abode HS Devices and Features ... 314
Figure 191 Orbit B-Hyve Account Setup ... 317
Figure 192 Orbit B-Hyve HS Devices and Features ... 318
Figure 193 Hunter Hydrawise Default HS Devices and Features .. 320
Figure 194 Hunter Hydrawise Setup ... 322
Figure 195 Hydrawise Additional Information .. 323
Figure 196 Solar Panel Integration Setup ... 324
Figure 197 Solcast HS Device and Features .. 326
Figure 198 Hayward Omnilogic Pool Integration Setup .. 331
Figure 199 Hayward Pool Omniologic HS Device and Features .. 332
Figure 200 Govee Setup .. 334
Figure 201 Govee HS Device and Features ... 335
Figure 202 Interactive Page .. 337
Figure 203 Owntracks MQTT Report for Android Phone .. 339
Figure 204 mcsMQTT Plugin Browser Page Options... 340
Figure 205 OwnTracks Display Page ... 341
Figure 206 Geofence Topics .. 342
Figure 207 Geofence Presence Devices .. 342
Figure 208 Espressif Flash Download Tool .. 345
Figure 209 ESP32 Startup Log ... 346
Figure 210 BLE Setup Tab Viewing Options .. 348
Figure 211 BLE Configuration Parameters Table .. 350
Figure 212 Beacon Location Table .. 352
Figure 213 Scanners Locations Table .. 354
Figure 214 Beacon Current Locations Graphic ... 355
Figure 215 Beacon Distance from Scanner Graphic.. 357
Figure 216 Beacon 24 Hours History Graphic ... 359
Figure 217 MQTT Statistics ... 363

Page 20

Figure 218 MQTT Statistics in HS Devices ... 364
Figure 219 Association Tab ... 367
Figure 220 Association Tab Build/Display Control .. 368
Figure 221 Association Table .. 370
Figure 222Edit Tab Device Identification .. 372
Figure 223 Edit Tab Publish ... 374
Figure 224 Typical VSP Edit Syntax ... 377
Figure 225 Edit Tab Subscribe ... 381
Figure 226 MQTT Broker Connection Settings.. 384
Figure 227 MQTT Broker Tab .. 391
Figure 228 mcsMQTT General Settings ... 395
Figure 229 Sign Properties Configuration Popup .. 399
Figure 230 Edit Popup Window .. 401
Figure 231 Publication List and Sign Setup Tab (Publist) .. 402
Figure 232 Publication List and Sign Setup Tab (Sign Setup) .. 403
Figure 233 History Tab Provisions for SQLite .. 409
Figure 234 Chart Tab ... 412
Figure 235 Local Page Tabs ... 417
Figure 236 BLE Beacon Presence Detection for HS4 ... 420
Figure 237 Zigbee USB Dongle .. 437
Figure 238 CC2530+CC2591 Header Pins .. 439
Figure 239 CCDebugger Cable Pinout ... 439
Figure 240 CCDebugger to CC2530+CC2591 Flashing Wiring ... 440
Figure 241 CC2530+CC2951 Wired to USB/Serial ... 441
Figure 242 RF TO USB (CC2530 CC2591) Wiring ... 442
Figure 243 Tasmota Device for KNX Integration ... 449
Figure 244 Tasmota KNX Test Configuration .. 450
Figure 245 Association Tab for KNX Test Messages ... 451
Figure 246 KNX Device in HS ... 451
Figure 247 KNX-MQTT-Bridge Terminal Window Feedback ... 451
Figure 248 Sonoff Hardware Modification ... 456
Figure 249 Module Configuration ... 457
Figure 250 MQTT Configuration ... 459
Figure 251 Other / Echo Configuration ... 460
Figure 252 Garage Door Installation Connections .. 461
Figure 253 GDO GPIO Setup.. 463
Figure 254 Counter Module Configuration ... 464
Figure 255 Sonoff 5V pickoff ... 467
Figure 256 Filtered Water Flow Calibration Seteup .. 468
Figure 257 Sonoff 4CH Module Tasmota Main Page .. 471
Figure 258 Sonoff 4CH Tasmota Configuration .. 472
Figure 259 Sonoff 4CH MQTT Configuration .. 473
Figure 260 HUE Emulation Setup .. 474
Figure 261 Sonoff 4Ch Pro R2 Circuit Board ... 476

Page 21

Figure 262 HS Device Setup for Irrigation Control .. 477
Figure 263 Sonoff Basic Setup Test for Irrigation Control .. 478
Figure 264 Irrigation Monitoring Topics ... 479
Figure 265 Switch Install for Enable Override ... 481
Figure 266 Sonoff 4CH Pro Module Setup .. 482
Figure 267 Sonoff 4CH Pro MQTT Setup ... 483
Figure 268Sonoff 4Ch Pro Telemetry / Logging Setup .. 484
Figure 269 Sonoff 4Ch Pro Other Setup .. 485
Figure 270 Microwave Radar Sensor Data Sheet (1/2) ... 487
Figure 271 Microwave Radar Sensor Data Sheet (2/2) ... 488
Figure 272 Sonoff Interface to Radar Motion Sensor ... 490
Figure 273 Sonoff Basic Circuit Board Top .. 491
Figure 274 Sonoff Basic Circuit Board Back .. 492
Figure 275 Radar Sensor Module Configuration ... 493
Figure 276 Radar Sensor WiFi Parameters ... 494
Figure 277 Radar Sensor MQTT Parameters ... 495
Figure 278 RCWL Schematic ... 496
Figure 279 RCWL-0516 Interface Wiring... 497
Figure 280 LD2410C Interface via UART ... 499
Figure 281 LD2410C Evaluation Prototype ... 500
Figure 282 LD2410C Tasmota Module Setup .. 503
Figure 283 LD2410C Reported RESULT Data ... 504
Figure 284 LD2410C Data Analysis .. 505
Figure 285 LD2410C HS Device and Features ... 506
Figure 286 SEN0395 Prototype Wiring ... 509
Figure 287 SEN0395 Interface Setup .. 509
Figure 288 SEN0395 MQTT Edit Tab Setup ... 510
Figure 289 SEN0395 HS Serial Feature .. 510
Figure 290 IR Emitter and Receiver Circuit ... 515
Figure 291 Sonoff GPIO Pin / Header location .. 516
Figure 292 GPIO Input Pull-up for three Receivers ... 516
Figure 293 Three IR Receivers Mounted in Sonoff Case ... 517
Figure 294 IR LED Emitter ... 518
Figure 295 High Power Triplex Emitter ... 518
Figure 296 Module Setup for Motion Direction ... 521
Figure 297 Laser mounting with adjustment screws .. 522
Figure 298 Laser beam break doorway mounting .. 523
Figure 299 Wifi Equipped Duplex Mouse Trap ... 526
Figure 300 Mouse Presence Detection Circuit .. 527
Figure 301 Mouse Detection Module Setup ... 528
Figure 302 Mouse Hotel Revision 2 .. 529
Figure 303 Notification Frame .. 530
Figure 304 Washing Machine Power Use ... 534
Figure 305 Notification Frame Internal Wiring ... 535

Page 22

Figure 306 Notify Module Configuration .. 536
Figure 307 Notify MQTT Configuration ... 537
Figure 308 NetCallerID .. 538
Figure 309 RS232 to TTL Translator .. 538
Figure 310 Sonoff CID Enclosure ... 539
Figure 311 Sonoff CID Module Configuration ... 542
Figure 312 Sonoff CID MQTT Configuration.. 543
Figure 313 Sonoff CID Other Configuration .. 544
Figure 314 Tuya WS-1 smart plug ... 547
Figure 315 Tuya WS-1 Smart Plug Module Configuration .. 548
Figure 316 Luntak WiFi Smart Plug ... 549
Figure 317 Luntak US101/US102/US103/X6 Configuration.. 550
Figure 318 EVA LOGIK ... 551
Figure 319 EVA LOGIK Smartplug GPIO Usage .. 552
Figure 320 WS212 dual plug with energy monitoring .. 553
Figure 321 Tuya WS212 Configuration ... 554
Figure 322 WS212 Circuit Cards .. 555
Figure 323 WS212 Circuit Interface Pinout ... 556
Figure 324 Slitinto NS-SP01 Dual Energy Plug .. 557
Figure 325 Slitinto NX-SP201 Dual Energy Plug Configuration ... 558
Figure 326 BN-LINK Smart Plug with Energy Monitoring .. 559
Figure 327 BN-LINK Component Side Circuit Board.. 560
Figure 328 BN-LINK Main Circuit Bottom ... 561
Figure 329 BL0937 Pinout ... 561
Figure 330 BN-LINK Configuration .. 563
Figure 331 BN-LINK Status Display .. 564
Figure 332 Wheswell Model ZLD-44USA-W WiFi Power Strip .. 565
Figure 333 Wheswell Power Strip Digital Card (back) .. 566
Figure 334 Wheswell Mains circuit card with digital serial breakout ... 567
Figure 335 Tuya Wheswell Power Strip Configuration ... 568
Figure 336 JINVOO Water Valve GPIO Configuration ... 570
Figure 337 Other Water Shutoff Valve GPIO Setup .. 571
Figure 338 TWE1S Module Pinout .. 573
Figure 339 Generic Door-Window Sensor .. 578
Figure 340 Closet Light/Monitor Configuration .. 579
Figure 341 Closed Light Contol Case Top .. 580
Figure 342 Closet Light Control Internals.. 581
Figure 343 Fake TV Physical Construction .. 583
Figure 344 Fake TV Configuration ... 584
Figure 345 Beacons shown with good scanner separation .. 590
Figure 346 Publist to define beacon friendly names .. 595
Figure 347 Low Pass Filter Evaluation ... 603
Figure 348 Low Pass Filter Response with RSSIError 20 ... 604
Figure 349 CheaperRFID Receiver with Wemos D1 Mini .. 620

Page 23

Figure 350 Generic 433 MHz RF Transmitter .. 626
Figure 351 ATTiny85 Piggyback to RF Transmitter .. 626
Figure 352 RFID Transmitter Connections .. 627
Figure 353 RFID Receiver Connections ... 628
Figure 354 Configuration for Two RFID Receiver Options ... 629
Figure 355 1517 Learning Remote RF Pulse Pattern .. 630
Figure 356 Setup of RF Command Channel in mcsMQTT and HS ... 633
Figure 357 RF Transmitter Before and After Wiring ... 634
Figure 358 RFID-RC522 Wiring .. 636
Figure 359 RFID-RC522 Card Reader Schematic and Configuration ... 637
Figure 360 LED Sign Back .. 641
Figure 361 LED Sign with Diffuser Mounted ... 642
Figure 362 LED Sign Electrical Connections .. 643
Figure 363 LED Sign Module Setup ... 648
Figure 364 Sign Configuration with FET to Control LED Power .. 649
Figure 365 LED Sign Main Page ... 650
Figure 366 LED Sign Text ... 652
Figure 367 LED Sign Image .. 655
Figure 368 Greenhouse Structure ... 657
Figure 369 Greenhouse Controls Install ... 658
Figure 370 Greenhouse Sonoff 4CH Pro Configuration .. 659
Figure 371 Greenhouse Sonoff Basic Configuration ... 662
Figure 372 Solar Water Recirc Pump and Tank... 664
Figure 373 Solar Collection Water Tubing .. 665
Figure 374 Bypass flow control and 2-way valve .. 667
Figure 375 Solar Heat Transfer Control Performance .. 668
Figure 376 Bucket Heater Sonoff S31 Configuration .. 671
Figure 377 Vibration (Door Position) Sensor ... 672
Figure 378 CC2531 Zigbee Coodinator ... 673
Figure 379 Door Open Sensor ... 673
Figure 380 Ebyte EB32 LoRa Transponder .. 674
Figure 381 IP Serial Hardware ... 675
Figure 382 IP Serial Bridge Configuration ... 676
Figure 383 Install of Mailbox Notification Interface ... 677
Figure 384 Orbit Irrigation Enclosure for Weatherproofing ... 678
Figure 385 Mailbox Serial Communication History .. 679
Figure 386 Homeseer Mail Setup.. 680
Figure 387 IR Blaster Case/Mount .. 681
Figure 388 IR Sender Tasmota Configuration ... 683
Figure 389 Alexa IR Control Setup .. 684
Figure 390 IR Schematic .. 685
Figure 391 IR Receive Tasmota Configuration .. 686
Figure 392 MaxBotix Ultrasonic Range Sensor ... 687
Figure 393 Tasmota Range Finder Sensor Configuration ... 688

Page 24

Figure 394 Sonoff Zigbee Bridge ... 691
Figure 395 Sonoff RF Bridge .. 691
Figure 396 Sonoff RF Bridge MQTT Payload ... 692
Figure 397 Sonoff RF VSP Capture .. 693
Figure 398 Zigbee Tasmota Discovery Reporting ... 694
Figure 399 Tasmota Zibgee Event Reporting for Window/Door Sensor .. 694
Figure 400 Tasmota Zigbee Event Reporting for Water Leak Sensor ... 695
Figure 401 Tasmota Zigbee Status Page ... 695
Figure 402 ZE16B CO Sensor and LCD During Bench Testing .. 698
Figure 403 Tasmota Module Configuration for CO Sensing ... 701
Figure 404 CO Sensor Associations ... 702
Figure 405 Typical SDR Hardware Dongle ... 706
Figure 406 Python Script MQTT Message Content ... 708
Figure 407 Pool Control MQTT Subscribe List ... 713
Figure 408 Pool Controller Default Device and Features .. 723
Figure 409 Dingtian IP Relay/Input/WiFi/RS-485/CAN Product Listing .. 740
Figure 410 Dingtian IOT Relay MQTT Configuration ... 741
Figure 411 Dingtian IOT Relay / Inputs as HS Devices .. 741
Figure 412 Dingtian IOT Relay MQTT Topics ... 742
Figure 413 Default WLED HS Devices.. 743
Figure 414 WLED /api topic end points .. 744
Figure 415 WLED Segment Definition ... 745
Figure 416 WLED Setup on Local Page .. 746
Figure 417 Virtual MQTT Topics for WLED Segments ... 747
Figure 418 WLED Segments as HS Devices ... 748
Figure 419 Event Action to send scrolling text to WLED display .. 749

Page 25

List of Tables
Table 1 Plugin Device Control Publish Template Options ... 74
Table 2 Substitution Variable List ... 75
Table 3 Expression Functions .. 101
Table 4 Receive Message Benchmark for Full vs. Express Modes .. 361
Table 5 CID Tasmota Commands .. 541
Table 6 WS212 Dual plug with energy monitoring Configuration .. 554
Table 7 BLE Scanner Tasmota Commands .. 591
Table 8 BLE Scanner RPi Tasmota Command Extension ... 601
Table 9 QIACHIP to ESP8266 Wiring ... 632
Table 10 LED Sign MQTT API ... 643
Table 11 MQTT Text Topic JSON Payload Keys ... 645
Table 12 MQTT Image Upload Payload Protocol .. 645
Table 13 Pool Controller Binding Snapshot .. 713
Table 14 MQTT Message Predefined Setup .. 724

Page 26

1 Introduction
mcsMQTT is a Plug-in that understands MQTT and other protocols and conveniently bridges the MQTT

environment with the HS3 environment. It can be installed with HS3 on either Windows or Linux. It

maintains a local SQLite database to remember message setup, history and the basis for graphing. It

also maintains a configuration file for general HS3/user configuration settings. It creates HS3 Devices,

Triggers and Actions. It responds to DeviceValue and DeviceString changes from all HS3 devices. It

publishes MQTT messages with ability to control Quality Of Service and MQTT broker retention

attributes.

The design premise of mcsMQTT is that HS3 is the primary automation node in a typical setup. This

allows mcsMQTT to leverage advantages of other protocols such as COAP/RESTful to provide discovery

and transaction-oriented messaging while still retaining the advantages of the Quality Of Service that is

important for devices that may not always be connected or the connection reliability is poor.

This Plug-in is provided as a service to the community. Others have contributed in various ways with

testing, feedback, how-to documentation, encouragement and source code including the SSL

implementation by vasrc.

2 Installation
Installation can be performed using the HS Updater facility from the Plugins or Interfaces page of HS.

 Often pre-release updater packages are available and use the Uploader Override process to intall.

To side-load a plugin the following process is used for HS4

1. Download the zip file that is in the HS4 updater format.

(e.g. http://mcsSprinklers.com/HSPI_mcsMQTT_5_12_0_0.zip)

2. Place the download in the HS4 folder.

3. Unzip the file updater_override.json and put it in the same HS4 folder.

4. With browser navigate the the HS4 plugin menu, Add option. Only HS4 plugin available will be

mcsMQTT. Select it. (I do not recall if you need to deselect the current mcsMQTT version before

this or not)

5. Remove updater_override.json to restore normal Updater operation.

For HS3 it is paraphrased from the HS3 SDK

1. Download the zip file that is in the HS3 updater

format. (e.g. http://mcsSprinklers.com/mcsMQTT_5_12_0_0.zip)

2. Place your package installation ZIP file into the \Updates3\Zips folder.

3. Unzip updater_override.txt. I believe it goes in the HS3 folder.

3. Now go to the menu Plugins‐>Manage and click on the Refresh (Update Listing) button so it finds

your updater_override.txt file and it should list your package

4. Remove updater_override.txt file to restore normal Updater operation.

In addition, incremental builds are available that contain only changed file. These are installed by

unzipping to overwrite the file of the same name. These are typically in \bin\mcsMQTT or

\html\mcsMQTT folders.

http://mcssprinklers.com/HSPI_mcsMQTT_5_12_0_0.zip
http://mcssprinklers.com/mcsMQTT_5_7_0_1.zip
http://mcssprinklers.com/mcsMQTT_5_12_0_0.zip

Page 27

3 Environment & Architecture

3.1 MQTT Environment
MQTT is a lightweight protocol that came about as a result of the Internet Of Things (IOT) initiatives.

Communications use TCP over IP with a publish and subscribe model. The environment is widely

supported on both Linux and Windows.

A typical setup has a single MQTT broker who is responsible for keeping track of all subscriptions and

assures that published messages are delivered to those that subscribe to the Topic of those messages.

MOSQUITTO is the standard broker. Normally it is run on something like RPi, Linux or Windows servers.

mcsMQTT will also provide the function of MQTT Broker if desired. This is the default. This

configuration is done on mcsMQTT Page Broker Tab MQTT Broker Name or IP Address text box. When

the text box is left empty then no connection to a MQTT Broker will be attempted. If selection is made

for use of internal Broker, then the IP will show as 127.0.0.1. It is recommended to use an external

MQTT Broker that is running on a network computer with high availability. When the internal MQTT

Broker is used, then it will only be running when mcsMQTT is running and if there are other network

clients that use MQTT these clients will no longer be able to communicate when mcsMQTT is not

running. Any combination of internal and external Brokers can be specified with up to six allowed.

Semicolon is used in the setup to separate the IP of each.

mcsMQTT is a MQTT client. By default, it subscribes to all or a selected subset of messages serviced by

the MQTT broker and it publishes that which is setup by the user in the form of HS Devices and Event

Actions. The mcsMQTT user identifies Topics of interest to HS and places the selected message Payload

in HS Devices or uses the Topic as an Event Trigger.

The MQTT broker being used by mcsMQTT is specified in the setup (/MQTT) browser page of the HS

Plug-in. This can be seen in Figure 40. A variety of options are available to identify the broker. One is to

use the IP address such as “192.168.1.100”. Another is to identify its network name. This is shown in -

Figure 40 example as “MQTT” as a dedicated RPi is being used for this purpose. The third option is an

internet address such as “MyDomainName.com”. Port 1883 is being used for MQTT communications so

the WAN/LAN router will need to be setup to allow port 1883 to be serviced from the WAN wherever

the broker is located. In all cases the firewall protection will need to be setup to allow free

communication between the broker and all clients.

The MQTT broker can be setup to restrict client access with username/password protection. SSL

protocol is typically another broker option. mcsMQTT supports the user of username/password and/or

SSL. If the MQTT broker is not using usernames/passwords then the setup of mcsMQTT will leave these

fields blank. 4-21-2022 12:30

3.2 mcsMQTT Plug-in Architecture
mcsMQTT is a Plug-in that complies with the HS3 and HS4 API for Devices, Event Triggers, Event

Conditions and Event Actions. Multiple browser pages are available from which user options can be

specified. The management associated with items that use MQTT protocol is done from the MQTT

menu selection. Other protocols and specialty functions such as IR, location tacking and others are done

from other browser pages available on the selection menu. The Local page contains setup for

Page 28

capabilities that are based on communications on the local network. The Cloud page contains setup for

capabilities that often connect to the internet to external servers to support the desired functionality.

No mater the source (MQTT, Local or Cloud) the information is decoded into individual endpoints and

made available on the MQTT page, Association tab from where the integration with HS can be specified.

This integration normally is initiated with use of the “A”ssociate column checkbox and/or “L”ongTerm

(InfluxDB, MySQL, SQL Server) or “S”hortTerm to SQLite checkbox. Further customization is then done

on the Edit tab or the MQTT Page which can be accessed via hyperlink of the row sequence number or

Ref button.

Devices are created and deleted based upon association with MQTT Topics.

• Created devices select their Location and Name properties based upon MQTT Topic with the

lowest part of the Topic hierarchy used for Name and the next up used for Location.

Alternately, Location properties can be specified on the MQTT Page Client Tab.

• DeviceTypeString is set based upon the receive or transmit nature of the MQTT Topic. Devices

created based upon a received MQTT Topic will be of type “MQTT_Receive”. “MQTT_Transmit”

is used for devices that will publish a MQTT Topic that is not associated with a received Topic.

• The Device MISC properties will be set to SHOW_VALUES and cleared to not perform

AUTO_VOICE_COMMAND. These can be edited from the Edit tab.

• The Device Address property is set to the received MQTT topic.

• DeviceVSP are setup depending upon the nature of the Payload with button-orientation for

those topics that appear to have two or three discrete statuses (e.g. ON/OFF, OPEN/CLOSED)

Payloads and 32-bit integer ranges for numbers and list for enumerated text. These properties

are setup when a subscription Topic is associated and then again when a publish Topic is

selected. A Device remains status-only until a publish Topic is selected.

• DeviceVGP are used for the buttons with the graphics being the standard images used by HS3.

• The CAPI interface supports buttons, numeric and string types of control. The DeviceValue or

DeviceString will store the Numeric and Text Payload, respectively.

• The use of DeviceValue or DeviceString by mcsMQTT will be based upon a combination of the

Edit tab Control/Status UI and the radio to select between the two. A Control/Status UI of Text

will use DeviceString. All others will use DeviceValue. The radio can override this default.

Information about Topic/Device relationships is maintained in the mcsMQTT database at

Data\mcsMQTT\mcsMQTT.db. Information about modes and settings is maintained in

Config\mcsMQTT.ini. If scripts are used then they are located in the \scripts subfolder. Backups of the

Data, Config, and scripts subfolders as well as the HS folders related to events and devices are made

daily if a backup location has been specified. If backups are enabled then it is advised that they be made

to a drive different than the one used by HS so if physical damage to main drive occurs the backup will

still be available and so the backup will not eat away at available space on the HS drive.

Startup of the plug-in establishes a connection with HS and makes HS aware of the capabilities provided

by the plugin. The plug-in then performs a connection to the MQTT Broker or spawns its own MQTT

Broker is one has not been specified. It also does its bookkeeping of MQTT topics and HS Devices that

have been previously observed. During this time, it will queue any inbound requests to send MQTT

messages as well as defer rendering of browser pages until it completes initialization.

Page 29

mcsMQTT tries to provide a capability that best suits a specific user’s needs. This is configured on the

Client Tab of the mcsMQTT browser page. In its most basic mode, it will allow a user to manually define

a Topic-Device relationship with a set of text boxes and supporting checkboxes or radio buttons for the

relationship’s characteristics. In its most user-friendly configuration, it will discover all Topics and

Devices available and let the relationship be defined by a single checkbox entry. The balance between

modes is driven primarily based upon performance capability of the host computer to support the

features provided by mcsMQTT in a responsive manner.

The HS Device Management page provides the ability to alter some of these settings after device

creation. For example, Location and Name properties can be changed to better suit the user’s intent of

the MQTT Topic, or a displayed Device’s status can be suffixed with “seconds”, “F”, “C” or whatever is

best to put the number in the proper context.

4 Quick Start
This section is intended to show typical MQTT use cases that will get a user going as quickly as possible.

Subsequent Sections 5 and 6 provide a more complete reference for sending and receiving MQTT

messages, respectively. Other reference subjects follow these.

mcsMQTT supports many special functions where most of the setup is automatic and no subsequent

user configuration is needed for integration with HS. For example, messages from WLED, a Shelly

device, Sense Energy, Pentair poolController, and others will automatically create HS devices.

The normal case, however, is that the decoded message is shown on the MQTT Page Association tab and

the user then uses the “A”ssociate checkbox to create the HS Device and then sometimes the Edit tab to

customize it.

There is a middle-ground when HomeAssistant Discovery protocol is used. This protocol consists of

messages delivered by a widget that describe what the widget does. For example, a light with

brightness control. After receiving this description and the widget then communicates its state the plug-

in will create the HS device with on, off and slider controls. Some, but not all, widgets can be configured

to use HomeAssistant Discovery protocol.

4.1 Q&A
The Q&A is based upon default settings. While other techniques are often available the objective here is

to describe the most common usages. It is assumed that the Association tab filters are setup to not

restrict what is displayed in the Association Table or that they have been setup in a manner that does

not hinder the intended capability.

4.1.1 How do I get started with MQTT
Not much happens with MQTT until a connection to a MQTT broker is established. The broker can be on

the same, different network computer or an internal one built into mcsMQTT. The Broker Tab in the

MQTT Broker Operations Table is used to identify the broker IP or network name. Some brokers are

setup with username/password protection. If yours is, then these two fields also need to be entered.

Assuming the MQTT broker accepts the connection to mcsMQTT, mcsMQTT will subscribe to all Topics

that the broker manages. mcsMQTT will likely receive some messages right away and then receive

others as new Topics are published by other widgets (other MQTT clients).

Page 30

The MQTT Page Association Tab with Topic Filter T1 set to MQTT is good to view to confirm that a

broker connection exists. It will also show the last message sent and received as well as statistics about

communications overall. Initially mcsMQTT will send a message to announce that it has established a

connection to the broker. This will be a message on “Topic xxx/mcsMQTT/LWT” with payload content of

“Online”, where xxx is the computer’s name. The LWT topic stands for Last Will and Testament. As part

of the connection to the broker, mcsMQTT tells the broker that its Last Will and Testament is “Offline”.

If at some time in the future mcsMQTT becomes disconnected from the broker then the broker will

deliverer the “Offline” message to all other MQTT clients to let them know that mcsMQTT is no longer

communicating.

The Association Tab can be used to observe all the Topics and Payloads delivered by the broker. Note

that the Association table is not dynamically built as new Topics are received. The “Show Selected

Associations” button needs to be used to build a new table. Payloads in the existing table will be

updated as they change from the broker every ten seconds.

4.1.2 How do I view the MQTT Topic Payload in HS Device
The published topics are available on the Associations Tab and will be shown in green rows. Use the “A”

column checkbox to create a HS Device. When numeric Payloads are received the HS Device Value will

be updated. When non-numeric Payloads are received then either the Device Value will be updated

based upon Value Status Pairs that show relationship between text and a number or will be stored in HS

Device String.

4.1.3 How do I setup a Command/Response Device so HS can control MQTT item and show its

status
The remote item’s status via MQTT will be available on the Association Tab. When “A” is used then the

status will be available in the HS Device. See Section 4.1.2. The Topic column will provide a text box in

which the Topic that HS should publish to control the remote item via MQTT. The specified Topic will be

published with the Value as Payload when the HS Device Value changes.

If the Device has been setup using Value Status Pairs (VSP) then either the Status or the Value will be

placed in the Payload to be sent. By default, it is the DeviceValue, but can be changed to use the Status

or Label by using the substitution variable $$STATUS: or $$LABEL: in the Payload template that is

available on the Edit tab.

Note that when the Topic is specified then the HS Device Management UI will create controls to allow

the Topic to be published through its UI. If no publish Topic is specified then the device will be a status-

only one.

4.1.4 How do I control an existing HS Device with a MQTT Topic
The pink rows in the Association table are the HS Devices that have an interface property that is not

“mcsMQTT”. These are the non-plugin Devices. When the “A” checkbox is used to map the HS Device

to MQTT then two text boxes will appear in the Topic column. One is a command topic. The command

Topic being published by the remote item that desires to control the HS Device is entered here. The

next time the MQTT Setup Page is drawn this row will show in a blue rather than pink or green color to

indicate its hybrid nature. If the remote item is expecting status returned as to the state of the HS

Device then the second status Topic text box is used to enter the Topic that will be used to publish

status.

Page 31

4.1.5 I want to subscribe to a Topic, but the Topic has not yet been published through the

MQTT Broker
The Edit tab is used add any subscription topic. Enter the new subscription Topic “MQTT Subscribe

Topic” row in the green table. Other properties of the subscription can be set at the same time in this

table. A common use for this is to subscribe to the special case broker $SYS topics that are otherwise

not visible.

4.1.6 The Device Management UI is not showing what I want for MQTT Devices, how do I

change it
The UI is determined at the time a status Topic is entered for an “A”ssociated subscription. It is based

upon the Payloads that have been received prior to association. If only numbers have been received

then the UI will be a number box. If a set of text Payloads are observed then mcsMQTT will setup a

selector UI to select among those that have been observed. If it appears that two-state text has been

received (e.g. On/Off, Open/Closed, Online/Offline etc.) then a button control will be provided for each

of the states.

If these defaults are not really what you want then the Edit tab is used to change them. Start by clicking

on the button on the Association tab that has the Ref number or entering the MQTT Subscribe Topic or

Device reference at the top of the Edit tab. The remainder of the table will be populated with the

properties of this subscription topic. Select the desired radio button on row for HS Device

Control/Status UI.

Control/Status UI of Button will show buttons on the HS Device Management page. List type will show a

pulldown. Both of these use the VSP associations to manage DeviceValue and Show DeviceStatus.

Control/Status UI of Number or NumberChange will show a numeric text box for control on the HS

Device Management page. It uses DeviceValue.

Control/Status UI of Text will show a text entry box for control and the DeviceString.

Control/Status UI of ColorPicker or ColorXy will show a color picker for control and use DeviceValue that

will publish a value in #RRGGBB hex format.

Control/Status UI of Slider or HSB will produce a slider control. HSB will also produce a color picker

4.1.7 I see Dim for HS Device Status, how do I remove or change ‘Dim’
The HS3 Device Management Page, Value-Status-Pair tab allows editing of prefix and suffix to be added

to a numeric status display. Dim is the HS default but can be edited to anything desired including totally

removed. A similar capability exists on the HS4 Devices Page, Status/Graphics tab.

4.1.8 Payload numbers contains periods for decimal. I need them to be comma
The Association Tab has a column for Regular Expression processing of incoming Payloads prior to the

Payload use within HS. For this particular case the Regular Expression match pattern is escape period

(i.e. “\.”) and the replace pattern is comma (i.e. “,”).

It also has an Expression text box from which expressions can be entered using functions shown in Table

3 and replacement variables in Table 2. The Expression “Replace($$PAYLOAD:,”.”,”,”)” will do

substitution of period for a comma.

Page 32

4.1.9 How do I know if I am communicating with MQTT broker
The connection status is shown on the MQTT Page, Client Tab. The Association Tab with Topic Filter T1

set to MQTT provides visibility into the connection status, last received and published messages and

timings associated with the subscriptions. Associations can be made to these statistics to facilitate their

use in HS Events.

4.1.10 Where do I look when things go wrong
mcsMQTT maintains a text file in \Data\mcsMQTT\mcsMQTT_Debug.txt that contains some general

startup trace information and other things of interest such as page rendering times. More information

is placed in this file if the General Tab, mcsMQTT Management Section, has the Enable General Debug

checkbox checked. This information is geared for developer and not user, but, in general will be needed

when support is needed. The file can be accessed directly or uploaded in zip format from the button on

the General Tab. For more severe issues, the HS Event Log will contain notifications provided by

mcsMQTT.

4.1.11 How do I know if a client has stopped publishing MQTT messages
Event triggers (MQTT Timeout) can be setup from HS Event page to trigger the event when a specified

period of time has elapsed without a topic being received. A provision of the MQTT protocol is for Last

Will and Testament (LWT) that may or may not be used by the client. If it is, then the LWT Topic for this

client can be “A”ssociated as a HS Device and then trigger an event when this Device shows the LWT

Payload for that client which is often “Offline”. There is also an LWT provision for when a client

connects to the broker.

4.1.12 How do I publish a MQTT message when some event has been triggered in HS
An Event Action can be defined for this event that will publish a specific Topic in response to that event.

Substitution variables (Table 2) can be used in the Action’s Payload that substitute a set of defined items

defined within HS, such as DeviceValue, time, etc.

Another approach is to have previously setup a publish Topic within a HS device (See 4.1.3) and then in

the Event Action to set this Device to the Value desired to command the MQTT topic to be transmitted.

4.1.13 How do I chart the time history of a topic’s payload
Two options exist for collection data in a database for later viewing. One is to store MQTT Topic and

Payload in an SQLite database. The other is to store HS DeviceValue in either InfluxDB, SQLite or MS SQL

Server database. See 4.1.14 for this second approach. The selection of one vs. the other depends if one

is trying to analyzer MQTT message history or history of changes in a specific endpoint’s value.

For the MQTT Topic and Payload the setup is done from the MQTT Page History tab. This allows the

retention to be specified and the types of MQTT messages will be saved.

 A chart can be prepared in one of three methods. The easiest is from Association tab by clicking on the

Payload hyperlink. A more customized chart is made from the Chart tab where specific topic and

payload parameters are entered and the chart shown at the bottom of the tab. The third is with a HTTP

request to the HS Server URL where the parameters are part of the request. See Section 9.

Page 33

4.1.14 How do I chart the time history of a HS device
When HS DeviceValues are being saved in either SQLite or InfluxDB then the selection of the specific HS

Device Reference is done from the MQTT Page Association tab. The “L”ongTerm column and

“S”hortTerm are used to select the Device and the target database. SQLite is oriented to short-term

data collection while the network databases are oriented to longer term retention. Short-term storage

also has MQTT Page History tab setup to specify the scope of the data collection.

A chart can be prepared in one of three methods. The easiest is from Association tab by clicking on the

LastDate hyperlink that will be available for any row where the S(ortTerm) or L(ongTerm) checkbox is

checked. A more customized chart is made from the Chart tab where specific topic and payload

parameters are entered and the chart shown at the bottom of the tab. The third is with a HTTP request

to the HS Server URL where the parameters are part of the request. See Section 9.

4.1.15 How do I change Payload temperature from Centigrade to Fahrenheit
A transformation can be performed on a payload before it is stored into a HS Device. For textual

transformation regular expressions can be used. For some textual and all numeric transformation then,

numeric expressions can be used that contain functions shown in Table 3 and replacement variables in

Table 2.

In this case it will be a numeric expression “$$PAYLOAD: * 1.8 + 32” that is entered on the Expression

row of the Edit tab.

4.1.16 My MQTT payload is wattage rate, but I want HS to provide daily wattage use
mcsMQTT can integrate or take the derivative of a MQTT payload input. The integral/accumulation

transformation is used if a rate is being provided in the payload. This is done on the Edit tab by checking

the “Create a HS Accum Device” checkbox and also using the checkbox to reset the accumulation at

midnight. HS Device will show the wattage rate and a second one will show the wattage. Had the

sensor been providing the wattage and the desired transformation was to see the wattage rate then the

“Create a HS Rate Device” new radio would be used.

When a integral or rate option is selected a pseudo MQTT topic is created with the Topic that is suffixed

with “-Accum” or “-Rate”. It will show up on the Association Tab from where it can be selected for

history data collection.

4.1.17 How do I easily initialize an IOT device with one-tiime configuration messages
The MQTT Page Pub List tab exists to publish a set of messages on demand. The messages that are

needed to define the IOT device configuration (e.g. LoRa frequency or irrigation schedule) are place in a

text file of type “.pub” located in the \Data\mcsMQTT folder. Each row of the text file will contain a

message of format Topic=Payload. The Execute Publication List button is used to send the set of

messages.

4.1.18 I have been experimenting and have topics that will never be used again. How do I

permanently remove them
The Obsolete function within mcsMQTT is used to remove Topics that have become obsolete. The

function can be done on an endpoint-by-endpoint basis on the Association tab or with a Topic template

on the General Tab. See 4.1.26

Page 34

4.1.19 How do I group devices in HS Device Management display
Devices with related information are often desirable to group so always show together in the HS Device

Management page. The user can group by whatever organization a user desires on a device-by-device

basis. In this case the Edit Tab has “Grouping Parent Ref” where the user can specify a parent device

reference and the MQTT device will become the child of this parent.

mcsMQTT will by default group JSON payload items into a parent device of the topic. Since all children

are required to have parents in HS4 it is not possible to leave a child without a parent grouping.

If a parent device does not exist then one can be created by entering a negative number for the

grouping ref. mcsMQTT will then create a parent device rather than using the number as the

identification of the parent.

4.1.20 How do I automatically associate sets of MQTT topics to non-plugin devices
A wildcard capability exists for incoming topics that conform to a pattern and the HS device reference is

contained in the topic. For example, a user has all lighting already setup with HS control and wants to

also provide a method to control via MQTT with minimum setup within mcsMQTT. On the Client tab in

section for Inbound (Subscription) Management is a key “Wildcard Non-Plug-in Control Template” that

will accept the pattern of a control Topic where part of the pattern includes any of the substitution

patterns described in Table 2. An example is shown in Figure 1 where the topic to control an HS device

will start with “test/” and end with “/.cmnd” and the device reference will be in the middle (e.g.

test/123/cmnd). When a topic is received that matches this pattern and the HS device exists then

mcsMQTT will associate the topic and device automatically. Other wildcard patterns such as

“Command/$$COMPUTER:/$$FLOOR:/$$NAME:” could be uses as well to uniquely identify each HS

device.

When multiple patterns are desired a comma between each is used. For example, if subscribing to “HS”

or “HS3” topics then the template would be specified as “HS/#,HS3/#”.

Normally status feedback when this HS device changes is desired for these devices. The status topic and

the payload templates are setup in the Outbound (Publish) Management section which is also shown in

Figure 1. Again “$$REF:” is used as the wildcard for the HS device reference in the Topic. Other parts of

the Topic can be simple text or other substitution parameters as described in Table 2.

The payload in this status message will normally be either $$LABEL: to indicate to publish the same as

what HS shows for a label of a Value Status Pair. It could also be $$STATUS: or $$$VSP: to use the VSP

mapping setup on the mcsMQTT Edit tab. This default payload template can be left blank for the default

payload of the DeviceValue.

After the command topic is received it is possible to use the Edit tab for the Topic/Device and change

any of the default behaviors on a Topic/Device by Topic/Device basis.

It is also possible to create associations for all HS non-plug-in devices immediately and not depend upon

receipt of a command topic. In this case both a wildcard subscribe/control topic and a publish default

topic template is needed. The radio button next to the subscribe wildcard is changed to the immediate

option. If new HS devices are created in the future, then they will be automatically associated with

MQTT topics when mcsMQTT is started or when the Enumerate button on the General Tab is used.

Page 35

If changes are desired in individual device Topics that vary from the default wildcard or template then

they can be done from the Edit Tab.

Figure 1 Wildcard Topic Setup

Page 36

4.1.21 How do I automatically create HS devices based upon MQTT Topics
There are a set of topics that mcsMQTT will recognize and automatically create HS devices. These are:

“shellies/#” for Shelly line of products,

“wled/#” for WLED light control,

 “pool” for poolController.js for Pentair,

“owntracks” for OwnTracks and NextTracks Apps,

“voicemonkey” for Echo TTS,

“Broadlink” for Broadlink IR/RF,

“Daikin” for Daikin AC control,

“EcoNet” for Rheem EcoNet

“Yolink” for Yolink line of products,

“sense” for Sense Energy

“espresense” for Espresense room location

“HS” for HS and Plugins

“MQTT” for statistics collected by mcsMQTT

“URL” for IPs setup on Cloud Page URL tab,

URL UDP Port 32101 for Coulisse B.V. Motion-Blinds.com Blinds Control

“URL/api.emporiaenergy.com” for Emporia Vue

“URL/Epson” for Epson projector

No additional effort is needed by the uses when these topics are present. For some the auto create

capability is enabled from the Client tab, Inbound Management “Enable Auto Device Creation”

checkbox.

mcsMQTT recognizes the HomeAssistant discovery protocol. These are topics starting with

“homeassistant/” and ending with “/config”. This protocol is used by MQTT clients to disclose the

nature of the devices it supports. mcsMQTT will collect this disclosure information and then if any topic

matching it is used it will automatically create HS devices for status and control.

mcsMQTT will also use this discovery protocol to disclose any non-plugin devices that have been setup

for MQTT. The discovery is published with use of the General tab, Outbound Management, “Publish

HomeAssistant Discovery” button. While it will help other clients to understand the nature of what has

been setup in HS, it is hampered by a poor functional model of devices within HS so the disclosure may

not result in the desired devices being created by other clients.

The above approaches provide the most complete automatic device creation as they handle all the

properties such as icons and control UI type appropriate for the device. A more generic, and less rich,

mechanism is described in the remainder of this section.

mcsMQTT will collect all topics for viewing in the Association tab and the user is able to create HS

devices by using the “A”ssociate checkbox. This opt-in selection can be changed into an opt-out

selection by using plug-inTopic wildcard template for the Topics that will automatically have HS devices

created. This template is found on the Inboud Management section of the Client tab. If every topic is to

Page 37

create an HS device then the template is “#”. If it is to create HS devices for all topics with “RESULT” in

the second position then the template would be “+/RESULT/#”. The template uses standard MQTT

Topic wildcarding. Anything that does match the wildcard template will obey the opt-in rules. Devices

that were auto-created and are not desired can be removed with “A”ssociate textbox on the Association

tab. Auto-Association only applies to the initial detection of a topic.

When Auto-Association is used then it may be useful to also set the Topic Template in the Outbound

Management section of the Client Tab. When this template is not blank then any HS device that is

created will have a publish Topic setup and either Buttons or Number text boxes setup with the HS

device. For example, Shelly devices suffix the Topic with “/command” to indicate that the topic is

commanding the Shelly device. The Topic template in this case would be “$$Topic:/command”.

Tasmota devices use “/cmnd” placed either as a prefix or before the last segment of the Topic. If the

substitution is “$$TASMOTACMND:” then mcsMQTT will evaluate the Topic and put the “/cmnd” in the

proper position. For example, “Switch/Power” becomes “Switch/cmnd/Power”.

If there are multiple sets of Topics that are whitelisted then each should be separated by semicolon.

This then servers as an OR function to Auto-Associate different sets of Topics, but not all topics.

Page 38

Figure 2 Auto-Association (Opt-out) Setup Example

Page 39

4.1.22 How do I publish HS device changes without explicit association to MQTT topics
When the objective is to primarily make HS a source of information and to publish all device changes

that are occurring in HS then it becomes desirable to do this without explicitly associating each device

with a MQTT Topic. The “Publish HS Device Changes” option can be used in conjunction with the default

Topic and Payload templates that are available on the Client Tab.

In the example shown in Figure 3 all changes will be published using the floor, room and name

properties of the device for the topic and the value, status and ref properties as a JSON payload. The

templates can be changed as desired. The option also exists to only publish topics for devices that have

not been created by mcsMQTT.

Figure 3 Publish Without Association

Page 40

4.1.23 How do I setup device with different status and control payloads
The desire is to control a door lock where the MQTT payload for status is LOCKED and UNLOCKED and

the HS control buttons show lock=100 and unlock=0.

mcsMQTT has been observing the MQTT status of the lock device and has made a list of LOCKED and

UNLOCKED as known payload content of the device. When the subscribed topic is associated and HS

device created then the Value Status Pairs will be created such that DeviceValues of 0 and 1 are assigned

to UNLOCKED and LOCKED respectively.

If your lock device responds to “lock” and “unlock” payloads then on the Edit Tab leave Payload

template blank. If it responds to a number such as 100 and 0 then use “$$VALUE:” for the Payload

template and edit as necessary the VSP in mcsMQTT to have 0 and 100 for the two states rather than

the default 0 and 1.

To create the “lock” and “unlock” command buttons the HS Device Management page is used. Click on

the name of the mcsMQTT device that now contains the LOCKED and UNLOCKED for its status states.

Select the Status Graphic tab. Click on the Add New Single Value and enter 0 and “unlock” for the value

and status respectively. Select control for the Status-control. Do the same for the “lock” control with a

value of 100. Note that the LOCKED and UNLOCKED states should be status for Status-Control so it they

are different then change them now.

This should result in 2 buttons or pull-down selections on the GUI. You may need to edit the Value

Graphics Pair to get the graphics you want for the two control buttons.

When you click a button the MQTT message will have a payload of 0 or 100 if the payload template is

$$VALUE: or “unlock” or “lock” if the payload template is $$LABEL:. When the node reports its status

change it will return something like UNLOCKED for which mcsMQTT will store a value of 0 in HS3. HS3

will show UNLOCKED in the status for the device on the browser page. Note that $$VSP: will normally

be the equivalent of $$LABEL: and $$STATUS: will use the Edit Tab status field of the VSP for the

replacement.

Note that when the desire is to only change the status text from what is received in the payload then

the Edit Tab provision for editing VSPs has the advantage of not being later overwritten by mcsMQTT is

the device properties are later changed in the Edit Tab. See Section 17.2.3.

4.1.24 How do I conveniently control a colored light
Colored LED lights or light strips come in various forms with some variance in the control capabilities. In

some cases, it will accept a Red Green Blue (RGB) which is usually represented in hex format. In other

cases, it will accept a JSON payload where the three components are separately encoded. Yet others it

will use a different color model such as XY.

mcsMQTT provides four forms of interface which uses the Color Picker provided by HS for means of

color selection. Received payloads will be converted from RGB, RGBW, XY or HSB color space into an

integer value that will be reflected in the HS color picker device. Publish commands formats will vary

based upon the type selected.

mcsMQTT also provides a method to use sliders in the HSB color space rather than color picker and use

RGB in the MQTT payload. This is RGBtoHSB option.

Page 41

RGB type expects #RRGGBB or RRGGBB as the status input and will publish command in #RRGGBB

format.

RGBW type expects “{"color":{"r":RRR,"g":GGG,"b":BBB},”brightness”:bbb}” as the status input and

will publish using the same format. mcsMQTT does the conversion from the HS DeviceValue

representing the color picker value.

The ColorXY type is expecting a subscription with a payload containing XY color space and brightness.

"color":{"x":<value>,"y":<value>},"brightness":<value>. mcsMQTT translates this into RRGGBB which is

what the HS device expects for the Color Picker control. Publish command will use

“{"color":{"r":RRR,"g":GGG,"b":BBB},”brightness”:bbb}” format.

The HSB type is expecting a subscription with a payload containing a comma-separated-values format of

Hue, Saturation, and Brightness “HHH,SSS,BBB”. JSON encoding is not expected for the three

components, but the key such as “HsbColor” can be part of a JSON payload.

HSB can also be used to create both color picker and a set of three sliders. This is done when the

received payload is in RRGGBB format and one desires to be able to individually conrol H, S, and B as

well as have composite color picker control. mcsMQTT will publish as RRGGBB no matter which of the

four controls are used.

The use of the Control/Status UI or HSB is likely the most flexible for lighting controllers that can accept

HSB commands (e.g. Tasmota). In this case mcsMQTT handles the conversion from the HS RGB Color

Picker UI and the HSB commands. It also provides the sliders to individually control Hue, Saturation and

Brightness as well as the Color Picker to select specific points in the color space. An example is shown in

Figure 4 HSB UI in HS

In the example shown in Figure 5 the bulb information is provided in a JSON payload with state,

brightness, color rgb, color x, and color y parameters. Assuming that one desires to control all

parameters, yet keep the parameters all grouped in HS screens, then the first step is on Client Tab,

Inbound (Subscription) Management and select the third JSON Decoding option to create both parent

and child keys. This will handle the grouping. Remember to come back when done with the new bulb

and change it back to the default first option of decoding into individual devices. If other organization

Page 42

means are to be applied then the Client Tab setting for JSON payload can remain in it default selection.

Next step is to use “A”ssociate checkbox for the parameters of interest so they map into HS devices.

After any of the items are associated then after the subsequent reception of the topic then an additional

pseudo-JSON items color:rgb is created. When this item is associated and a publish topic is entered then

the Control/Status UI type will be set to ColorXY and a HS Color Picker control made available. Figure 5

shows use of state, color rgb and brightness.

Since these will be controlled parameters with a MQTT publish the publish topic is entered into each of

the three text boxes. I n this example it will be the same topic and it will be the same as the base sub

topic with a /set suffix. Sometimes the end point is contained in the Topic and sometimes it is a generic

topic with the specific parameter identified in the payload.

To support the JSON payload encoding needed for ON/OFF and Brightness control the Payload Template

will need to specify the necessary JSON format. Use the Edit tab and change the Publish Payload

Template for JSON formatting for the On/Off device. The easiest way to bring up the Edit tab is to click

on the Ref button of the state device in the Association tab. In this case the contents of the text box will

be {"state":"$$LABEL:"}, {"state":"$$VSP:"}, or {"state":"$$STATUS:"}. The “{"state":" part is what the

bulb is expecting to identify the parameter. The closing “}” completes the JSON syntax. The “$$LABEL:”,

“$$VSP:” or “$$STATUS:” is a replacement variable telling mcsMQTT to use the HS VSP, the mcsMQTT

VSP Key or mcsMQTT VSP Status which will be either “On” or “Off” as setup in the Value Status Pairs

(VSP) of the device.

The same process is followed for the brightness device. In this case it will be {"brightness":"$$VALUE"}

where $$VALUE: indicates to use the HS Device Value numeric.

The third control is for color selection. Again, use the Edit tab and assure the type to be a ColorXY. This

will give the desired Color Picker UI for color selection in HS and will tell mcsMQTT that JSON payload

encoding is needed and that XY to RGB translation is needed before storing the color value in HS.

 By default, the brightness device will be created with a text box to enter a number in the HS UI. This

can be changed from HS Device Management for the Brightness device. Status Graphics tab and change

the range to 0 to 255. Also change the type to slider.

Figure 6 shows the result of the above setup with Figure 7 showing various options to make color

selections. Note that use of the color picker will result in a RGB color and the brightness which is implicit

in the RGB value. There is a parent device 1103 which will contain the last received payload for the

bulb. Under it will be the devices to control brightness with a slider, state with on/off buttons, and color

with a color picker. When the slider is used only brightness information is updated, but the status

published by the light will likely modify its RGB and the color picker control status will also be updated.

The same is true with update of brightness device when RGB color is changed.

Page 43

Figure 5 Color Bulb Parameter Mapping

Figure 6 HS Device Setup for Color Control

Page 44

Figure 7 HS Color Picker Control

4.1.25 How do I change the subscribe Topic that is associated with a HS Device
There are two ways to change a subscribed Topic to HS Device relationship. One creates a new HS

Device and one preserves the existing HS Device. To illustrate, assume there two Topics visible on the

Association tab. One is Energy/Watts and the other is Energy/Amps with the Energy/Amps Topic

associated with HS Device 123. The objective is to associate Energy/Watts rather than Energy/Amps.

The first approach is point and click. Uncheck the “a” checkbox on the Energy/Amps row of the

Association tab and then check the “a” checkbox on the Energy/Watts row. This will delete Device 123

and HS will assign a new Device such as 124. This is the easiest way when no events or other uses have

been made for Device 123.

The second approach is done from the Edit tab. Enter either 123 or Energy/Amps at the top and this will

populate the remainder of the page with the properties of this relationship and it will also put a change

text box on the second row. In this change row text box enter Energy/Watts. This will preserve Device

123, remove its association with Energy/Amps and assign it to Energy/Watts.

It is not possible to change the reference number of a plug-in Device in this manner because HS assigns

reference numbers and all reference numbers used by the plug-in are assigned to other Topics.

It is possible to change the reference number of non-plug-in device. As an example, assume Device 234

is “Bedroom Light” and Device 456 is “Bedroom Plug” and currently Topic Bedroom/Lamp/cmnd Topic is

associated with Device 234. On the Edit tab first row enter either 234 or Bedroom/Lamp/cmnd. When

the second row appears enter 456. This will change the association of Topic Bedroom/Lamp/cmnd to be

Device 456. Device 234 will no longer be associated with any MQTT Topic.

Page 45

4.1.26 How do I remove Topics that have become obsolete
It is not unusual, especially when just starting or experimenting; that Topics are created that will never

be used again. They will appear on the Association tab and just represent clutter.

There are three ways to remove obsolete topics. One is on the Association tab by clicking the

“O”bsolete checkbox on any row that is to be removed. Visual feedback is provided by the Obsolete

column header changing from “o” to “Delete Marked”. After all obsolete Topics have been marked then

use this “Delete Marked” button to actually remove them. Note that the “Exclude O & R Columns”

checkbox on the top of the Association tab must not be checked to make the “O”bsolete column visible.

When a parent Topic has been marked as obsolete then all JSON items of this Topic will also be marked

as obsolete and the item’s obsolete checkbox will be disabled. If a parent Topic is not marked as

obsolete then individual JSON items can be marked as obsolete and deleted.

The second is on the MQTT Page General Tab Obsolete Topics row. The obsolete Topic is entered and it

will be removed from the database. The next time the browser page is refreshed the Topic will no

longer be visible.

It is possible to remove a set of Topics by using Wildcard “*”, “+” or “#” symbols. The “+” represents

anything in the middle of a Topic. The “#” is used to indicate everything to its right. The “*” is similar to

“#”, but allows partial topic segments to be used. Special care is needed when using wildcard symbols

because they can have far reaching effect.

mcsMQTT makes a backup at midnight, if enabled by user General Tab setting, so it is possible to

manually copy a prior version to mcsMQTT.db in the \Data\mcsMQTT folder, mcsMQTT in the \Config

folder or a script in the \scripts folder and then start mcsMQTT again to get back to that prior version if

necessary. This backup includes all files in these three folders so it is also possible to restore

information maintained by HS or other plugins using this same technique.

Some examples of using the wildcard symbols follow assuming that the following Topics exist

Test/topic1:a

Test/topic1:b

Test2/topic/power

Test2/topic/power1:a

Test2/topic/power1:b

“Test/topic1:#” will remove the first two Topics.

“Test2/+/power1:#” will remove the last two Topics

“+/topic/#” will remove the last three Topics

“Test*” will remove all five Topics

“Test/top*” will remove the first two Topics

A third way is to automatically remove topics that had not yet been associated with HS device or are not

being used for history data retention. It only comes into play at plugin shutdown. The next time the

Page 46

plugin starts the topics will no longer be present, but can be relearned if they occur again. This is also on

the General Tab, Obsolete Unassociated checkbox.

4.1.27 How do I update HS Device with minimum resource utilization
There are times when all that is needed is a simple update of HS devices with MQTT payloads and no

need for history, charting and some of the other features available in mcsMQTT. Express mode, which is

enabled on a Topic-by-Topic basis, achieves an 80% reduction in CPU utilization that would occur in

normal mode.

On the Association tab the “e” column checkbox is used to identify if a Topic has full support or if

Express mode support is sufficient.

The Client tab provides a default mode option in the Express mode row. The “E”xpress column

checkbox on Association tab will be checked/unchecked when a Topic is associated with the “A”ssociate

column checkbox, depending upon the default for Express mode. All unassociated Topics will continue

to have full support provided independent of the default mode selected. Express mode can be very

austere to minimize CPU utilization, but can also support features available in mcsMQTT if enabled on

the Client tab.

Express mode operation is controlled at the Topic level. It is not possible to utilize Express mode for

some, but not all JSON payload items. The Association tab “E”xpress column checkboxes are only

enabled for selection at the Topic level. The JSON payload items are slaved to whatever is selected at

the Topic level.

See Section 16.2 for discussion of Express mode tradeoffs.

4.1.28 How do I associate multiple topics to the same HS Device
It is common that a MQTT node will respond to a command with an acknowledge of the new state as

well as provide the state periodically. Each of these two updates will be done using different topics, but

represent the same state information.

To model this in mcsMQTT the Ref column text box is used. First “A”ssociate a Topic and create the HS

Device. In Figure 8 this was done on row 19 to create the HS Device 1310. 1310 was then entered on

row 1 and row 3. Device 1310 will be updated with ON or OFF payload whenever Topic

“SpaceHeater/POWER”, “SpaceHeater/RESULT:POWER”, or “SpaceHeater/STATE:POWER” is received.

Page 47

Figure 8 Association of multiple Topics to same HS Device

4.1.29 How do I use multiple Topics to change status of single HS Device

4.1.29.1 Case 1 Same Status reported on multiple topics

The scenario being described here is the case for a Xiaomi vacuum that uses individual topics to indicate

the state of the vacuum such as the following:

vacuum/clean_start with payload that indicates the time it started

vacuum/clean_stop with payload that indicates the time it stopped

vacuum/clean_pause with payload that indicates the time it paused

Page 48

While these three Topics could be associated with three individual devices it would be more convenient

to have a single HS device that provides the Start/Stop/Pause status and let the LastChanged property

contain the timestamp.

The setup for this is the same as the setup described in Section 4.1.28 to associate one HS Device to the

three topics. In addition, regular expressions on the Edit tab will be used on each of the three

subscribed topics to change the timestamp into status text. The “Payload RegEx Match Pattern” will be

“.+” (without quotes) and the “Payload RegEx Operation” radio will be to “Replace” for each of the

three Topics. This pattern will look for any text so any timestamp will match. The “Payload RegEx

Replace Pattern” text box will contain “Stop”, “Start”, “Pause” or whatever status you want reflected in

HS and is what is expected by the vacuum in its command topic. Each of the three subscribed Topics will

have one of these three.

These same three status items will be itemized in VSP list on the Edit tab for each Topic. This can be

done by entering “Stop,Start,Pause” (without quotes) in the VSP text box.

The Control UI radio is then selected to be Button. This will create the HS device with three buttons to

control. The HS status will be updated based upon the most recently received of the three Topics from

the vacuum.

The Publish Topic is entered in the Edit tab or Association tab such as “vacuum/command”. Note that

the status values (Start/Stop/Pause) can be different than the command values. If this is the cases then

the edits are made on the HS Device Management page to separate the Status Graphics from “both” to

individual entries for “status” and “control”. What must be maintained are the number relationships

between mcsMQTT VSP and those on Device Management page.

To avoid duplication of effort in the Edit tab for each of the three Topics it would be best to first setup

one of the three Topics and then enter the Ref number of this Topic into the Ref column text box for the

other two. The second and third will then be a clone of the first and all that is needed is to use Edit tab

on these later two to change the regular expression replace text to one of the other states.

4.1.29.2 Case 2 New status to be derived from multiple topics

Consider the case of a roller blind where two relays are used to control the up/down motion of the
blinds. Tasmota firmware is used in this example. The two relay status are reported by Tasmota in
Topic xyz and JSON payload something like {..."Power1":ON,"Power2":OFF...}
This will be shown on Association tab as rows
xyz:Power1 ON
xyz:Power2 OFF

The desire is to show in HS as a single device that combines the status of the two relays.
 Associate, via checkbox in “A” column the second row (the one that comes later in the JSON payload) to
create an associated HS device.
In the Expression field of the Edit Tab combine the two payloads as two catenated strings

"$$PAYLOAD:(xyz:Power1):"&"$$PAYLOAD:"

This will result in status values of OFFOFF, OFFON, ONOFF and ONON when all combinations are

received.

Page 49

Use the VSP edit to change the HS status to be appropriate. e.g. OFFOFF=0;CLOSED if the status is going

to be displayed. If control buttons are also added as described below then it is likely that the edit will be

in the HS Devices page to remove the ability to control these four values. That is by deleting them in

HS4 and changing their property to Status Only in HS3.

Use the VSP edit to create two additional values that will be used for the control (e.g. ShutterStopClose

ShutterStopClose=4;CLOSE)

Use Button or List for the Control/Status UI depending upon buttons vs. pull-down selector for the UI.

In the Publish Topic use cmnd/xyz/$$LABEL:

In HS Devices browser page Status/Graphics tab change the first for Value Status Pairs to be status only

and the last two to be Control only unless independent control of each relay is also desired.

Tasmota will update the relay status when it receives the ShutterStopClose command and this would

then be reflected in the created HS device as one of the four states of the two relays.

4.1.30 How do I create a device that has both slider and On/Off/Last button controls
Consider the case where a MQTT widget provides status and control of a dimmer device where the

On/Off is provided on one Topic and the Brightness is on a second Topic. This could also be a single

topic with JSON keys for state and brightness. One interface approach is a HS Device with two features.

This the the straightforward “A”ssociation of each topic to two HS features that are grouped under the

same parent Device.

Another approach to this is with a single HS Feature with controls from both On/Off Topic and

Brightness Topic. To accomplish this one of the two Topics is “A”ssociated to create the HS Devcie and

Feature. The second topic is linked by using the same Ref number provided by HS for the first

association in the Ref column textbox of the second Topic.

If button and slider controls are to be shown on the HS Feature then enter the publish (control) topic for

each of these two from either the Association tab row or from the Edit tab. See Figure 9 and Figure 10.

From the Edit tab select the Control/Status UI to be Button and Slider, respectively. mcsMQTT will

recognize that a slider and button control are assigned to a single Ref and will merge the controls for

each of the two into the Feature. It will also force the Off to be 0, the On to be 101 and the slider to be

in the range of 1 to 100. The text for Off and On will attempt to be obtained from previously received

payloads for the button. If the text is not as desired then use the Edit tab to setup text for the 0 and 101

values. mcsMQTT will also add a third button “Last” that can be used to restore the brightness to the

level before the widget was turned off.

If a On/Off topic is received with an Off status then mcsMQTT will set the Feature’s DeviceValue to 0. It

will set the DeviceValue to the Brightness value in range of 1 to 100. An On/Off status of On will result

in DeviceValue being set to 101.

The above assumption is that the bulb being controlled will return to full brightness when ON command

received and the LAST command is to restore it to prior brightness. If the bulb returns to prior

brightness when ON command is given, then an edit can be made on HS Devices Page, Status/Graphics

Page 50

to give the ON a value of 100 and the slider max of 99. This will give the desired operation for the bulb

that returns to prior brightness when ON is commanded.

Figure 9 Setup of Multi-Control Feature

Figure 10 Slider with Buttons Control

When publishing based upon the HS button controls of event action then it will likely need to be

formatted in the expected manner. This is done in the Publish Payload Template of the Edit tab.

Page 51

Assuming that the desired Payload for each of the following actions and the previous brightness was 33

is shown below for each of the four control actions:

1. Off button {“state”:”off”}

2. On button {“state”:”on”}

3. Last button {“state”:”on”,”brightness”:33}

4. Slider to 50% {“state”:”on”,”brightness”:50}

The Publish Payload Template can be such as:

<<CASE($$VALUE:,'0;101','{"state":"off"};{"state":"on"};{"state":

"on","brightness":$$VALUE:}')>>

The << and >> are used to indicate that an inline expression needs to be evaluated

The CASE function provides conditional output based upon the $$VALUE: (HS Command Value). For the

value of 0 the payload will be {"state":"off"}. For the value of 101 the payload will be

{"state":"on"}. For all others (i.e. slider values), it will be in the range of 1 to 100 for the

slider{"state":"on","brightness":$$VALUE:}.

mcsMQTT will intercept the Last button value (255) and change it to the previously received brightness

payload.

Note the Publish Payload Template uses both apostrophe and quote. The quote is needed for JSON

syntax. The apostrophe or quote can be used to delimit strings in the expression, but in this case since

quote is part of the text, the apostrophe is used as the string delimiter.

Note also that the CASE function is expecting each of the case input values and results to be delimited

by semicolon and not a comma. This was done to prevent confusion when using numbers that,

depending upon region, have decimal represented by either a period or a comma.

In this example there are two Topis (or JSON endpoints) and each will have a Publish Payload Template

and a Publish Topic. When responding to a Off or On button, the selected Topic and Template will be

the one for which the On and Off buttons are received. The Last button and the slider will use the Topic

and Template where the slider was setup.

4.1.31 How do I setup MQTT Associations for an existing ZWave Dimmer
There may be times when the status of a HS dimmer is desired to be published via MQTT. Dimmer

devices typically contain both a status and a brightness level and for this example the message will be

encoded in JSON with keys for status and brightness so may look something like

{“status”:”on”,”brightness”:75}.

When HS reports a change in the Zwave Dimmer via HSEvent it will provide a DeviceValue that will be in

the range of 0 to 100. The 0 is interpreted as Off and the other values interpreted as On with a

brightness level.

Page 52

An “A”ssociation is made for the HS Zwave Device on the Association table or the MQTT Page using the

“A” column checkbox. This will automatically create a Publish Topic. It is likely that this Publish Topic

will be edited to provide a more meaningful name. This can be done on the Association table or on the

Edit tab of the MQTT Page. To have visibility of the Zwave Dimmer on the Association table, the filters

on the Association tab need to have checkbox for “Include Non-Plugin HS Devices” and at some prior

time the “Enumerate Non-Plugin Devices” button at the bottom of the General tab needs to be clicked.

Since the payload of the MQTT message will be JSON there needs to be a Publish Payload Template that

defines the JSON format. This is done with the Association table “Encode Payload per template” textbox

or on the Edit tab. HS is providing only one value and the JSON has two keys so a conditional expression

is needed for the template. The inline expression is indicated as starting with << and ending with >>.

{"status":"<<IF($$VALUE:=0,'Off','On')>>"<<IF($$VALUE:>0,',"brightness

":$$VALUE:','')>>}

If the desire is to control the Zwave Dimmer with a MQTT message then a Subscribe/Control Topic

needs to be defined at the bottom of the Edit tab. For this example, assume the same status and

brightness keys of a JSON-encoded are used to provide the remote control of the dimmer. Assume the

Topic is “Zwave/Control/Dimmer”. A status “Off” will command the dimmer OFF. A status of “On” will

command the dimmer to the level contained in the brightness key.

After any MQTT JSON message is received on the “Zwave/Control/Dimmer” Topic, the decoded JSON

keys will be available for use. These will be identified as “Zwave/Control/Dimmer:status” and

“Zwave/Control/Dimmer:brightness”.

An Expression on the Edit tab is used to combined the two JSON keys into a single value to command the

HS Device. In this case a conditional IF function is used to look at the status key and if set to “Off” then

use “0” otherwise use the value of the brightness key.

IFEQ("$$PAYLOAD:(Zwave/Control/Dimmer:status):","Off",0,

$$PAYLOAD:(Zwave/Control/Dimmer:brightness):)

The resultant setup is shown in Figure 11.

Page 53

Figure 11 Zwave Dimmer Control and Status Setup

Page 54

4.1.32 How do I create a device for blinds or shutters with single feature control buttons
Typical blind and shutter control is provided by two relays where each relay reports its status in

individual topics. There will also be a third topic that provides the current position of the blinds or

shutters.

When an association is made with Control/Status types having one or more Toggle and one Slider across

the topics then mcsMQTT will treat this a a single feature with control and status based upon the topics.

The Toggles will be the Up/Down or Open/Close ON-state controls. The Slider is the position feedback.

It will never be shown as a control but its numeric value will be shown when the Toggle states are all

0/OFF. See Figure 12. When one relay is active the status will be the direction of motion (Open/Close).

Both relays ON is failure mode.

Figure 12 Topic Association for Shutter - Blinds

The labels for the buttons and the status when a relay is ON will be the VSP status setup on the Edit tab

for the ON relay value. The two end positions will be from the OFF-relay status. 0 and 101 are used for

the VSP values where 101 is significant to support the recognition of the button push from HS. See

Figure 13. 0 and 102 are used for the second button. The order of the buttons is the same as the order

when the button associations to the reference feature is made. The VSP numbers cannot be edited, but

the status values should be edited to get the desired text for the status and the button labels.

Page 55

Figure 13 Shades - Blinds VSP Setup

The HS device and feature will be shown as in Figure 14.

Page 56

Figure 14 Shutter - Blinds HS Device and Feature

4.1.33 How do I connect to multiple MQTT Brokers
Two techniques are available to use multiple brokers. One is to setup a second broker as a client and

use broker bridging. The other is to specify the second to sixth broker on the MQTT Page Broker Tab. A

semicolon is used the separate the name or IP of each broker as shown in Figure 15. The port, ID and

security will default to the same as the first broker, but each can be individually changed. When editing

the credentials for each broker a semicolon is used to separate the credential for each broker, such as

shown for port and ID in Figure 15.

Page 57

Figure 15 Multiple Broker Setup

All subscriptions will be associated with the broker that delivered the message. If there are multiple

brokers setup then the Association tab topic for each parent row will be suffixed with [#] where # is the

broker that delivered the message. The example in Figure 16 shows broker 2 as the provider of the

message.

Figure 16 Broker Identification for Received Topics

The statistics provided on the Association Tab with Topic Filter T1 set to MQTT shows information for all

brokers except for the broker status which shows each individually. If HS devices are populated with

statistics, then the Online status in DeviceValue is 0/Offline if any broker is offline. By default, the first

Page 58

broker will be used to publish messages for HS devices that are associated without a subscription. This

can be edited on the Edit tab with radio button as shown in Figure 17.

The relative position of a broker in the list is very important as this is what is remembered by mcsMQTT.

It will not matter for data that is received from multiple brokers, but when HS is publishing the broker

that will be used is based upon the broker index at the time this broker delivered the subscribed topic.

For example, consider a setup of “192.168.0.100;127.0.0.1” as the list of brokers. Topic “From100” is

received from 192.168.0.100 and associated with a HS Device and has a publish topic “From100/set”

setup. 192.168.0.100 is first broker in the list so mcsMQTT will remember to publish From100/set to the

first broker in the list. If sometime later the broker list is changed to “192.168.0.200;192.168.0.100” and

HS then publishes topic “From100/set”, then it will be sent to broker at 192.168.0.200 because it is the

first one in the list.

This makes it important to keep the broker position static and add new brokers to the end of the list. It

was done this way so that broker IPs can be changed and no change is needed in the prior setup of the

MQTT-based devices.

Figure 17 Broker Selection for Non-Plug-in Devices

4.1.34 How to record changes to HS Log
When a device is controlled from the HS UI then a “Device Control” action is put in the HS Log. If a

similar logging is desired when the device is updated based upon MQTT payloads then two setup actions

are needed. First is on the History tab using the Pub-Sub Message History checkbox to Log changes. The

second is on the Association Tab H column to checkbox the specific topics for which logging will be done.

When the log entry is made one of two forms will be used. For express mode the from /to payload will

be shown. For normal mode the from/to HS values will be shown. See Figure 18.

Page 59

Figure 18 HS Log of MQTT-based changes

4.1.35 How to view CSV payloads in separate HS Devices
Payloads may contain numeric data as a group or set of values separated by commas. Consider the

following payload:

{"HSBColor":" 120 ,100,46","Channel":[0,46,0,47]}

The HSBColor key contains three CSV values and the Channel key contains four in a group bracket

holder. These two items will be stored in HS devices as strings in DeviceString. The Control/Status UI

will be of type “text”. To create additional HS devices that contain the individual numbers into

DeviceValue the Edit tab Control/Status UI type of “CSV” is selected such as shown in Figure 19.

Another option is to select “HSB” which will yield similar results, but also contain the context of

controlling a device that is expecting color control.

Figure 19 CSV type Payload Selection

There will be a HS device created for the key and one for each of the CSV components. The default

name of each will be the same as the subscribed topic and suffixed with the 1-based position of the

number in the CSV list. HS Device Association will be used to keep all the devices remaining together

when displayed.

Figure 20 CSV Type HS Device Creation

If a CSV device is to be controlled then the publish payload topics need to be set on the Association tab

or Edit tab. For the CSV case the topic is entered as a set of topics which each using a semicolon (“;”) as

the separator. The controls will be setup as sliders with range between 0 and 100. An example is shown

in Figure 21 and Figure 22. In the HSB case the publish topic will be the topic for the color picker control

and if the sliders are used for control then the values of the three H, S and B sliders will be combined

Page 60

and payload will be the same as the color picker payload which is a set of three decimal values

separated by commas.

Figure 21 Setup of CSV Publish CSV topics

Figure 22 Devices for CSV Control Type with Publish topic

4.1.36 How do I create unique HS devices when the payload content contains device

identification
A common situation is that a device will publish on a topic using JSON encoding for the payload and one

fo the keys of the payload is the identification of what device characteristic is being reported. Two cases

are supported by mcsMQTT. One is where the JSON contains identification information that applies to

all other keys in the same payload. The second is where identification applies only to the keys in the

JSON group that contains the identification. In the later case the parent of the group is not considered

and only treated as a wildcard position holder.

In the first case, for example, consider the following two message payloads that are sent on the

“Printer/Status” topic.

{“Id”:”ink”,”empty”:false}

{“Id”:”paper”,”empty”:false}

Normally mcsMQTT will provide two devices when selected since two JSON keys are in the payload.

These are:

Printer/Status:Id

Printer/Status:empty

What is actually desired is to have separate “ink” and “paper” status available so the view presented to

HS would be as follows. This would allow HS device creation of separate ink and paper status devices.

Printer/Status:Id

Printer/Status:ink:empty

Printer/Status:paper:empty

The Edit tab is used for the actual parent Topic (does not have any of the :JSONkey elements) and in the

textbox that is provided for MQTT Subscribe Topic at the top the JSON key “Id” would be entered to

elevate “Id” from the Payload to become a member of the Topic.

Page 61

Figure 23 Using Payload Key to Achieve Indepenent Devices

In the second, wildcard, case consider the following JSON payload where the actual temperature sensor

identification is the Id part of the message and group name (DS18B20-1/2/3) has no particular

significance. The 1/2/3 is usually part of a JSON array and the order of the array elements has no

particular significance. To indicate that the 1/2/3 should be ignored (i.e. wildcard) then nomenclature

*:Id should be used.

This results in the subscription topic and device name to be shown with “:*:” as shown in Figure 24. The

second step is to now “A”ssociate the temperate key rows. From this point forward the DS18B20-1/2/3

group name is ignored and the HS device reference remains aligned with the Id field of the JSON

payload. Other JSON keys that are not part of the same group as the Id are not affected.

sonoff-1234/STATUS = {"StatusSNS":{"Time":"2022-01-27T01:33:31","DS18B20-

1":{"Id":"000003A280FF","Temperature":77.2},"DS18B20-

2":{"Id":"020E92451C31","Temperature":60.2},"DS18B20-

3":{"Id":"021892457E2A","Temperature":58.3},"BME280-

76":{"Temperature":113.4,"Humidity":4.1,"DewPoint":23.6,"Pressure":993.1},"BM

E280-

77":{"Temperature":69.7,"Humidity":25.0,"DewPoint":32.2,"Pressure":993.3},"Pr

essureUnit":"hPa","TempUnit":"F"}}

Page 62

Figure 24 Elevate JSON key with Wildcard

In summary, when a Payload with a set of JSON keys exists and one of the JSON keys in the JSON group

should be used as part of unique identification then use the Edit Tab with the parent Topic to enter the

JSON key that will be elevated. This is done at the top in the MQTT Subscribe Topic textbox. If the JSON

key is part of a JSON array where the array position has no significance then prefix the JSON key with

“*:” in the MQTT Subscribe Topic textbox. In both cases, from the Association Tabs, “a”ssociate the

items to be mapped into HS. Do not associate the row that has the JSON key that was elevated as that

would be redundant.

4.1.37 How do I store picture contained in MQTT Payload
MQTT payloads typically contain text, but it is also possible to send binary data such as a jpg image as is

done for the Ring doorbell camera as described at GitHub - tsightler/ring-mqtt: Ring devices to MQTT

Bridge using a Topic such as:

 “ring/afa06d00-91a1-49ed-8698-1653ad64c51f/camera/10082c56ad93/snapshot/image"

If this Topic is selected to be “jpg File” as the Control/Status UI on the Edit Tab as shown in Figure 25

then the received Payload will be stored in file in the subfolder

\html\mcsMQTT\File\{floor}\{room}\{name}.jpg where {floor}, {room} and {name} are the HS properties

of the “A”ssociated Device. A thumbnail will also be created in the same folder that will show as an icon

for the device via the HS VGP mechanism.

Figure 25 Control/Status UI selection for a jpg image

The DeviceValue will be incremented for each time the Topic is received. The DeviceString will contain

HTML hyperlink and image tags. The image tag will render a thumbnail of the jpg file and the hyperlink,

when clicked, will render the full-size image. An example of HS4 rendering is shown in Figure 26 where

two jpg File features with the first one showing it has been received 5 times.

https://github.com/tsightler/ring-mqtt
https://github.com/tsightler/ring-mqtt

Page 63

Figure 26 HS4 Device with two jpg File Topics

4.1.38 How do I publish different payload formats depending upon the HS control value

A Publish Template is used to format payload in a message being sent by mcsMQTT. The usual scenario

is that the format of the payload is the same and only a data value will change based upon what is being

requested by a HS commanded value. Take the scenario, however, where the format of the payload

needs to change for each command. For example, HS has three control values UP=0, DOWN=1,

ROTATE=2 and the commands that need to be published are shown below with different formats.

UP - {“U”:true, “D”:false}

DOWN - {“U”:false,“D”:true,”R”:”left”}

ROTATE – {“R”:true}

Conditional expressions can be used such as a CASE shown below. Note comma used to separate the

three case parameters and semicolon used to separate the items in the second and third parameters

that are both strings.

<<CASE$$VALUE:,”0;1;2”,”{“U”:true, “D”:false}; {“U”:false,“D”:true,”R”:”left”}; {“R”:true})>>

Conceptually this will work, however the content of the two strings contain quotes around the U, D and

R. There is no way to escape or otherwise indicate the literal quote vs. a delimiter quote in the CASE

string parameter. To overcome this the inner quote is changed to a unique character and then part of

the expression is to replace this unique character with the quote. An example below where the

REPLACE function was added to replace ~ with “.

<<REPLACE(CASE$$VALUE:,”0;1;2”,”{~U~:true, ~D~:false}; {~U~:false,~D~:true,~R~:~left~};

{~R~:true}),”~”,”””)>>

Page 64

4.1.39 Data is flooding my system, what can I do
Some MQTT clients send data at a very high rate and this could bring HS down to a crawl and experience

significant delays.

The best way to address the problem is to reduce the rate at which the client is producing data. This will

reduce network traffic to the MQTT Broker and then from the Broker to mcsMQTT/HS. Unfortunately,

some clients will not provide this capability.

If data is being received at a high rate and there is no association with a HS device then there is no need

to subscribe to that Topic. The Topic Discovery row on the Inbound Management Section of MQTT

Page, Client Tab provides a radio control to select between the default listen to everything to selecting

specific topics. The middle radio is usually the easiest, and recommended selection, for any system that

is running without need to discover new widgets. Note that it is the Topic and not just a JSON item

within a Payload that is being selected in this case. If any data in the Payload is associated with a HS

Device Feature, then the Topic will be included and all JSON items in that Payload will be processed.

The MQTT Page, General Tab provides a Reject textbox to specify one or more Topic patterns that

should be ignored upon receipt without further processing. The wildcards of + and # per MQTT

standard syntax can be used to specify groups of topics that should be rejected.

When the data is of interest and associated with HS Device Feature then two techniques can be applied

to reduce the CPU burden. One is to use the Express Mode (“e” column checkbox on Association Table).

This will minimize the times the plugin will use the HS object. The HS Object is the largest CPU user

when Device Features are being updated. MQTT Page, Client Tab, Inbound Management Section has

Express mode tuning options that limit the capabilities that are supported on Topics selected for this

mode of operation.

Another solution is to only process a subset of the data being received. Telemetry type data is typically

only marginally changing on each sample so there will be minimal loss of fidelity when data is

subsampled. For example, data may be received 4 times per second, but any HS event action based

upon this data will only be needed every minute. This means that only 1 of the 240 samples are actually

needed to achieve the objectives of the event action. Subsampling can be defined on a topic-by-topic

basis on the Edit Tab of any parent Topic (e.g. Association Table Sub without a colon). In this example a

value of 60 would result in one sample processed every 60 seconds and the others discarded.

The second method to specify subsampling is on the MQTT Page, Client Tab, Inbound Management

Section with a Subsample Template and Interval. The interval is the sample effect as on the Edit Tab,

but the Template can have wildcard (e.g. Widget/HighRateData/#) to specify a range of one or more

Topics.

4.1.40 Can I use the ZigbeePlus MQTT Broker with mcsMQTT
By default, the HS ZigbeePlus plugin will create a MQTT Broker on interface 127.0.0.1:1883 using the

MQTT 3.1.1 protocol. The default configuration for mcsMQTT is also to create a MQTT Broker on

127.0.0.1:1883. mcsMQTT will first confirm that port 1883 is available for use and if so then not create

the MQTT Broker on 127.0.0.1. If mcsMQTT starts first, then itr is likely that ZigbeePlus will have a

problem creating the MQTT Broker on 127.0.0.1.

Page 65

Both mcsMQTT and ZigbeePlus have options to use other MQTT Brokers. For example, both can be

configured to use Mosquitto running on some computer that is network-visible.

For those that are already using ZigbeePlus and desire to keep using the MQTT Broker that it created,

then mcsMQTT MQTT Page, Broker Tab should be configured to not use its Internal MQTT Broker with

the radio setting and the External MQTT Broker should be set to the IP of the HS computer. This will not

be 127.0.0.1, but something like 192.168.0.100.

ZigbeePlus and mcsMQTT both use the same MQTT library so functionality should be very similar. A

MQTT Broker like Mosquitto has a much wider user base so should be a more mature implementation

than those used by the two HS plugins. External Brokers also have the advantage that they continue to

function when HS or the HS Plugin is not running.

The mcsMQTT implementation supports both the version 3 and 5 protocols, contains persistent retain

message support, and provides statistics of the clients that are connected such as shown in Figure 227.

If one has very basic needs for MQTT communications then it should not make much difference which

MQTT Broker is used. For others, the mcsMQTT or Mosquitto MQTT Brokers may be a preferred choice.

4.1.41 How do I send multiple messages such as cycle a widget off and on
The Publish Payload Template contained on the Edit Tab contains the format of payloads being sent

from a HS control. If multiple MQTT messages are to be sent with a single HS control action then use

the “&&” separator to identify the payload for each message to be sent on the same Topic. A one

second delay will be added between each message.

Given a scenario where power is to be cycled either Off then On or On then Off depending upon the

current state of the relay then the following Template can be used assuming the two states of the relay

have Device Values of 0 and 1.

<<CASE($$VSP:,"0;1","0;1;<<MOD(($$DVR:($$REF:):+1),2)>>&&<<$$DVR:($$REF:):>>")>>

This is a conditional expression that itemizes what to do when the command is 0, 1 or something else.

This will correspond to three buttons of OFF, ON, CYCLE with VSP definitions of 0, 1 and 2. In the 0 and 1

case the 0 or 1 will be used in the payload. In the other (2) case there will be two messages sent. The

first will be opposite state of the HS Device Values and the second will be the current state of the Device

Value. Note the use of << and >> to specify evaluation order where the 0/1 value is first determined and

then this becomes part of the CASE evaluation.

Page 66

4.2 Default Settings for mcsMQTT
mcsMQTT is setup from Plug-in button – mcsMQTT option. Multiple pages are available. For MQTT

operation the MQTT Page is selected. Multiple tabs are available with Client, Broker and General being

those of interest for the setup. The other tabs are used for later interaction.

The default configuration is a MQTT Broker that is hosted by mcsMQTT and mcsMQTT as the client

connecting to this MQTT Broker. These can be altered on the MQTT Page, Broker and Client tabs. A

common configuration is to use an external Broker rather than the internal one. Mosquitto is a popular

MQTT Broker.

4.3 Automatic Setup of Device to Topic Relationship
The default operation of mcsMQTT is to firewall all MQTT Topics and allow the user to selectively

associate each with a HS device. This is the “opt-in” approach. The Association tab shows all the Topics

that have been detected.

This default operation can be changed where the Association tab firewall becomes an “opt-out” or

hybrid of “opt-in” and “opt-out”. The Client tab, Incoming (Subscription) Management section has a line

for “Wildcard Plugin Auto Associate Template”. When this text box is left blank the default “opt-in”

behavior will be used. When one or more Topic templates are entered then the Topics that match the

template with have HS device automatically created. Other topics will be firewalled at the Association

tab for user selection. The Topic template follows MQTT topic wildcard standards where “+” designates

current position in hierarchy and “#” is used to indicate everything at this and positions to the right. To

Auto-Associate everything the template would simply by “#”.

After some Topics have been published by the Broker the next step is the Associations Tab. This tab can

display the universe of information related to received Topics and potential Topics that can be published

by HS. Because the amount of information is large a subset is normally selected for display. Three

tables are used to narrow down information of interest. Initially let us consider only the Topics that

have been forwarded by the Broker. The first table will have one checkbox, “Include MQTT Topics”

checked. The two tables will have no selections made in the pull-downs. If there a limited number of

Topics published the second pull-down table can be left unchanged. If there are many then select one

or two columns of the pull-down to be more specific in the Topic of interest.

The “Show Selected Associations” button at the bottom will then be used to display all the Topics

forwarded by the Broker. If there have been hundreds then it will take many seconds to render the

table. If only a handful then it will be a second or two.

The table rows will be colored green to indicate that this is an inbound Topic and potential mcsMQTT

device in HS. The “A”ssociate column will have no checkboxes and all the Ref column entries will be

blank text boxes. The Topic and Payload of the messages will be shown. If the Payload has been

encoded using JSON then multiple rows will be shown with each JSON item on a row.

Map Topic to mcsMQTT HS Device

If one of these Topics is of interest and the desire is to show the Payload in HS3 Device then the

“A”ssociate checkbox is checked. This will create a status-only device in HS. The device will be updated

each time the Topic is received.

Page 67

When “A”ssociate is checked then an additional text box is provided in the Topic column. This text box

is used to Publish a MQTT Topic that will contain the HS Device Value or String each time the Device

changes. The selection of Value or String for the Payload is based upon the receive Topic’s Payload. If it

is a number then DeviceValue will be Published otherwise DeviceString will be Published. The exception

is for a receive Payload of ON, OFF, OPEN, CLOSED, FALSE, TRUE, DISARMED, ARMED, INACTIVE, ACTIVE

0 or 1. In these six cases the HS control presented on the UI will be a button with DeviceValue of 0 and 1

and Labels that correspond to the text Payload or On/Off for the two numbers. Selection of Label

(Status) or Number (Value) is made in the Publish Payload Template on the Edit tab with $$VALUE: for

Value. $$LABEL:, $$VSP:, or $$STATUS: will result in the label being published.

When an association is made the update of the HS Device, action triggers on this Topic, History of the

Topic is collected and if the payload is JSON-encoded then mcsMQTT will be decoded it into its

individual components. If the additional features beyond the update of the HS Device are not needed

then the “E”xpress checkbox can be used to identify this Topic being one that will be processed in

Express mode. Express mode CPU consumption is about 20% of full support mode. The default is full

support, but can be toggled on the Client tab Express mode setting. See Section 16.2 for a discussion of

Express mode tradeoffs.

Map Topic to an existing non-Plug-in Device

Assume the Topic of interest is a command that is desired to control an existing HS Device. In this case

rather than using the “A”ssociate to create a new mcsMQTT Device the Ref column text box will be used

to enter the Device Reference of the existing HS Device. The Topic column will show an additional text

box and the “A”ssociate checkbox will be checked. If a Topic is entered into this new text box then this

Topic will be published upon HS Device change.

The same general process can be performed by viewing the non-Plug-in devices and using the

“A”ssociate checkbox to establish a relationship. In this case the “Include non-Plug-in HS Devices”

checkbox would be checked to make available the list of HS devices in the Association table.

Change an existing Topic to HS Device association

If an association between a Topic and HS Device needs to be changed to a different Device or different

Topic then the Edit tab can be used to make this change. Alternately the existing association can be

removed by unchecking the “A”ssociate checkbox on the Association tab to remove the association.

This is followed by using the “A”ssociate checkbox on the desired Topic. This alternate method may be

quicker point and click method but it will result in the original Device being deleted if it is a mcsMQTT

plug-in device. If there were events or other uses of the original Device reference then these will be

broken.

When using the Edit tab to accomplish the change the original Device reference number is maintained.

Start by entering the Ref number or the Topic at the top of the Edit tab. In the second row a change text

box will appear. In the text box enter the Topic that should be associated with the Ref. If the Ref is a

non-plug-in Device then it can be changed to another non-plug-in Device to associate the Topic with a

difference Device. It is also possible to change the association of the Topic from a plug-in Device to a

non-plug-in Device by changing the Ref, but the reverse it is not possible because HS assigns reference

numbers and all that have been assigned by HS are already associated with other Topics.

Page 68

4.4 Manual Setup of Device to Topic Relationship
If you know the Topic “myHome/myTemperature” will be Published by a temperature sensor then this

Topic can be specified in the Subscription (Inbound) table of the Edit tab. A HS status-only device will be

created and its DeviceValue will be updated when a numeric Payload is Published on this Topic.

If the Topic is “myHome/myLight” then the same process can be followed. In this case the “HS Device

Publish Topic” in the green table can be used to control the light. Let us say the control Topic is

“cmnd/myHome/myLight”. The Button radio selected to generate On/Off controls in the HS UI. The HS

Device will be controlled by the button on the UI, or other means; mcsMQTT will Publish Topic

“cmnd/myHome/myLight” with Payload of “On” or “Off”; myLight will respond to the command and

Publish “myHome/myTemperature” with a Payload of “1” or “0” to reflect its state. Note that the

specific values and text are customizable via the HS Device Management Page Value-Status-Pairs.

If you have an existing HS device and you want it to respond to commands from MQTT Topics or want it

to be commanded by MQTT Topics then the pink Publish (Outbound) table is used. Separate text boxes

are provided for each case.

4.5 Leveraging Multiple mcsMQTT Browser Pages
mcsMQTT allows multiple browser windows to be opened and each is maintained independently. One

page can be used to display a large Association table and another page could be used with the Edit Tab

to edit associations. In essence one becomes a reference lookup and the other used to perform the

edits.

Note that each browser page will continue to be updated with new Payloads, statistics etc. as long as

each window is open. When the plug-in is restarted those browsers windows become stale and cannot

be used to interact with a new instance of mcsMQTT. The URL needs to be refreshed to redraw the

page or a new page opened.

Page 69

5 Sending MQTT Messages
Sending a MQTT message can be done via Device changes, Event actions, or script. Two paradigms exist

with respect to publishing MQTT Topics. One is to support a HS Topic that reflects the status of an HS

device. This is described in subsequent paragraphs of this section. An example is publishing the HS

Uptime since last restart.

The second is part of bidirectional communication with another publisher where HS publishes a

command to affect the state of an external node. This is described in Section 0. An example is a light

that publishes its ON/OFF status and HS is used to control the ON/OFF state of this light.

Any HS Device that has been “A”ssociated can publish a status or command Topic. The Topics that are

published are entered into the Topic text box on the Association Tab. The published Payload will

depend upon another configuration described below.

In the case where a non-Plug-in Device is “A”ssociated the Payload will default to the DeviceValue and

occur when the DeviceValue changes. See Figure 27. This can be changed on the Edit tab immediately

or later by entering the HS Device Reference number. The trigger can be selected as a change in

DeviceString or DeviceValue (or both). The Payload will be based upon the publish template and can

contain substitution variables. See Figure 27. Substitution variables are described in Section 5.2.

The special symbols +, / and # are reserved per MQTT protocol and cannot be used in Topics. If these

symbols are part of the HS device name, for example, then they should be URI-encoded so as to not

violate the standard. The space character is not recommended and by default it should be URI-encoded

as well.

To specify URI-encoding the substitution variable should be suffixed with “_URI_ENCODE”. A second

option is to use the URI Encoding radio for the message that is available on Edit tab. This will result in

either URI encoding or replacement of all special characters with an underscore character. This will

apply to all characters in the message.

Another option exists for space where substitution variable is suffixed with “_UNDERSCORE”. For

example, “$$NAME_UNDERSCORE:” as part of the publish Topic will result in any spaces in the HS

Device Name to be replaced with “_”.

Figure 27 Non-Plug-in Device Association

Figure 28 shows a non-plug Edit popup. Figure 29 is a popup that appears when the “Configure Sign

Parameters” hyperlink is clicked. It shows that the message going to the sign will appear in Row 1, and

Page 70

will show forever (Duration = 65535) or until another Log message is published or the Duration field of

message topic is later set to 0. The text color of the messages will be hex FFFFFF (white).

Figure 28 Non-Plug-in Device Manual Setup

Page 71

Figure 29 Messaging Sign Properties

If the desire is to control this HS Device from MQTT subscription then the Edit tab or Associations Tab

can be used to enter the subscription Topic in the text box provided. In Figure 27 and Figure 28 these

boxes are currently blank so there will be no means to control Device 10 via MQTT, but Device 10 status

will be reported via MQTT as the DeviceValue changes.

In the case where HS is to control via sending a MQTT Topic to an external entity that has published

status the Association Tab is used to select the published Topic with the “A”ssociate checkbox. This will

bring up a publish Topic text box where the command Topic is specified. See the last row of Figure 30

where Device 212 was created. In this example the status Payload that is on the Subscription (Sub:)

Topic GarageDoor/Door is “CLOSED”. Because this is one of the special case Payloads mcsMQTT will

create a two-state button with labels CLOSED and OPEN and assign DeviceValues of 0 and 1 to these.

The radio under the command Topic shows the label (i.e. CLOSED or OPEN) will be published when the

DeviceValue changes between 0 and 1. Had the radio shown Value rather than Label then the published

Payload would be 0 or 1.

Had the Payload been something like the “Online” shown in the second row of this figure, then the UI

presented would not be a button, but a text box where text could be entered and this text would then

be the Payload delivered. In this case publishing occurs on a DeviceString change.

The third and last case is where the Payload is numeric such as for Device 248. For this one the UI will

again be a text box for entry of a number and the Topic will be published on a DeviceValue change with

the DeviceValue in the Payload.

Page 72

Figure 30 Plug-in Device Subscription Association

When a subscribed Topic has been selected with the “A”ssociate checkbox the Edit tab Subscription

table is populated with the same information as the row of the Association Tab table. This allows

further editing if the default behavior is not as desired. It can also be later edited by entering the

“GarageDoor/Door” subscription Topic as shown in Figure 31.

The Client tab has default setting for the publish Topic in the Outbound Management section. When

this text box is not blank then the Pub text box will be automatically completed with this default. Since

all publish topics will be different the default publish Topic is normally defined using substitution

variables. See Section 5.2. A reasonable Topic template for Tasmota devices is “$$TASMOTACMND:”.

For Shelly device it is “$$TOPIC:/command”. If your location has primarily one family of devices that

share a common command topic structure then using the template will be beneficial.

Page 73

Figure 31 Plug-in Device Publish Setup

5.1 Send MQTT via HS Device Change
Any HS Device that has a publish Topic defined can have a MQTT message published whenever the

Device changes Value or String. If the HS Device is owned by mcsMQTT (i.e. created by mcsMQTT by

associating it with a subscription Topic), then the either Value or String change can cause the Topic to be

published. The decision on which is controlled by the HS Device Control UI as shown in Figure 31. It is

Page 74

also dependent on the publish payload template also shown in Figure 31. Table 2 contains a list of

substitution variables. Those applicable to commands from HS controlling plugin devices are described

Table 1.

For non-plugin devices where the publish action is initiated by the HSEvent callback the same

substitutions are used. If no substitution variable is used then no replacement will occur in this case. In

addition, $$PREVIOUS: and $$PUBLISHED: variables are also available for the previous HS DeviceValue

and last published payload respectively.

Table 1 Plugin Device Control Publish Template Options

Template

Replacement

Variable

Text to Send in the Payload

none Use Edit tab VSP key based upon the number provided by HS. The key will be the

subscribed topic payload value. For example the VSP entry of “true=1;On” will use

“true” if there is no replacement variable or it is $$VSP: in the template.

$$VSP: Same as none. This is the default

$$LABEL: Use the text provided by HS for control. This will be the HS status value that is

normally shown on the button label. It is normally the same as the VSP key, but not

always for the case when the control is a HS selector pulldown.

$$STATUS: Use Edit tab VSP status based upon the number provided by HS. The status will be the

last text on the VSP line. For example the VSP entry of “true=1;On” will use “On” is

$$STATUS: is used in the template.

$$VALUE: Use the number provided by HS for the control

If set to Button or Number then the Value change of the HS Device will result in publishing the Topic

with the new DeviceValue in the Payload. If it is Button then either the numeric Value will be put in the

Payload or the button label as specified by the radio in the same figure.

The Topic will be published with the new DeviceString as the Payload If the selection is Text. The String

change of the HS Device will be the event to publish the Topic.

If no publish Topic is setup such as Device 207 in Figure 30, then any change of this Device will not result

in any MQTT published Topic.

A UI is provided on the Device Management page to allow manual entry of the Payload that is desired to

be published. The same UI can exist on custom pages. It is also possible to publish on changes of the

Device Value or String. This can be from another Plug-in, script, or event action. An example is provided

that has Device 138 associated with a MQTT published Topic and running this event will cause the Topic

to be published. See Figure 32.

Page 75

Figure 32 Example of Controlling a mcsMQTT Device

5.2 Send User-Customized Topics and Payloads
The publish behaviors described in Section 5.1 describe the default behaviors of the plug-in with static

user-defined Topics and unformatted and fixed Payloads. Both of these can be customized. Figure 27

actually shows a Topic and Payload that uses the customization via set of defined replacement variables.

These variables have the syntax of $$xxx: where xxx is the name of the replacement variable. The set of

replacement variables support is shown in Table 2.

Plug-in defaults for both published Topic and Payload follow the plug-in convention of

ComputerName/mcsMQTT/Loc2 /Loc/Name. The payload is the unformatted DeviceValue,

DeviceString, or enumerated Value-Status-Pairs. Use of these defaults is achieved by leaving the

Outbound (Publish) Management section entries for both of these blank. See Figure 40.

The actual Topic used when publishing is specified by the user as described previously. The default will

show up when a HS device has been associated for MQTT publications. This can then be edited to

whatever is needed on a Device-by-Device basis. To minimize the user entry burden, the default Topic

template can be customized with the entry on the Client Tab. What is shown now in Figure 40 is a

customization for “$$computer:/$$room:/$$name:”. Every time a HS Device is “A”ssociated this

template will populate the status Topic text box. The published messages will look something

“MyPC/Room1/Try1” for the example shown in Figure 27. Note that “/” are used in the Topic template

as part of standard MQTT Topic formats. Any text in the template that is not a substitution variable will

become part of the Topic.

The $$TasmotaCmnd: substitution is a somewhat special case variant of the $$Topic: substitution. It will

take the received Topic and insert “cmnd” to turn it into a publish command. If the topic starts with

tele/ or stat/ then it will replace these with cmnd/, otherwise it will insert “cmnd/” before the last leg of

the topic such as Topic “Light/Power” will turn into “Light/cmnd/Power”.

Table 2 Substitution Variable List

Topic-Oriented Substitution Variables

$$ADDRESS: HS Device Address property

$$CODE: HS Device Code property

Page 76

$$COMPUTER: Network name of the host computer

$$FLOOR: HS Device Floor which is also the Location2 property

$$INSTANCE: Instance number of the plug-in Interface property

$$INTERFACE: HS Device Interface (Plug-in) property

$$NAME: HS Device Feature Name

$$PARENTNAME: HS Device Name

$$REF: HS Device Feature Reference Number

$$PARENTREF: HS Device Reference Number

$$ROOM: HS Device Room which is also the Location property

$$TYPE: HS Device Type String property

$$TASMOTACMND: Topic to publish command to Tasmota device

Payload-Oriented Substitution Variables

$$DATE: Current date in short format

$$DEVICETYPE: Device Type (String) property

$$TAG: Free form text field on Edit tab of an associated device

$$DEVICESUBTYPE: DeviceType SubtypeDescription property

$$PAYLOAD:

$$PAYLOAD:(Topic):

$$PAYLOAD:(JSONKey):

Last received MQTT Payload

Last received MQTT Payload of any Topic (e.g.

My/Topic:item:subitem)

Last received MQTT Payload of this Topic (e.g.

item:subitem)

$$PAYLOAD_EUROPE:

$$PAYLOAD_EUROPE:(JSONKey)

:

Same as $$PAYLOAD except numeric results with comma

are converted to numeric results with decimal.

$$STATUS: Status label as defined for status (3rd parameter) for VSP on

mcsMQTT Edit Tab

$$CONTROL: HS feature control label (2nd parameter) from Edit tab VSP

$$LABEL: HS CAPI label (available only when using CAPI for control)

$$VSP: Button label as defined for key (1st parameter) for VSP on

mcsMQTT Edit Tab

Page 77

$$STRING: HS Device String

$$TIME: Current time in short format

$$YEAR: Local Current Year number

$$MONTH: Local Current Month number

$$DAY: Local Current Day of Month number

$$HOUR: Local Current Hour number

$$MINUTE: Local Current Minute number

$$SECOND: Local Current Second number

$$UTCYEAR: UTC Current Year number

$$UTCMONTH: UTC Current Month number

$$UTCDAY: UTC Current Day of Month number

$$UTCHOUR: UTC Current Hour number

$$UTCMINUTE: UTC Current Minute number

$$UTCSECOND: UTC Current Second number

$$LASTCHANGE: HS DeviceLastChange property using default date/time

display format

$$TOPIC: Last received MQTT Topic

$$VALUE: HS Device Value

$$VALUE_EUROPE: HS Device Value with comma replaced with period. When

numeric expressions are used the fractional part of a

number needs to be separated by a period.

$$PREVIOUS: The previous (i.e. current before change) DeviceValue that

exists at the time a DeviceChange event is occurring. It is

typically used in conjunction with the inline expression

function “IfChange” such as

<<IFCHANGE($$VALUE:,$$PREVIOUS,”5%”)>>

$$PUBLISHED: The published payload that was last sent. It is typically used

in conjunction with the inline expression function

“IfChange” such as

<<IFCHANGE($$VALUE:,$$PUBLISHED,”5%”)>>

$$CAPIVALUE: Last Value change request sent through CAPI interface used

by mcsMQTT SetIOMulti

Page 78

$$CAPISTRING: Last String change request sent through CAPI interface used

by mcsMQTT SetIOMulti

$$HSEVENT: Last parameter delivered by HS on HSEvent callback. This

will typically be the new DeviceValue or DeviceString

HS Device-Oriented Substitution Variables

$$DVA:(address): Use device value. Identify device using address.

$$DVC:(device code): Use device value. Identify device using device code. (HS3

only)

$$DVR:(reference): Use device value. Identify device using device reference.

$$DTA:(address): Use device string. Identify device using address.

$$DTC:(device code): Use device string. Identify device using device code. (HS3

only)

$$DTR:(reference): Use device string. Identify device using device reference.

$$DSA:(address): Use device status. Identify device using address.

$$DSC:(device code): Use device status. Identify device using device code. (HS3

only)

$$DSR:(reference): Use device status. Identify device using device reference.

$$GLOBALVAR:(key): Use the global variable key’s contents.

Date and Time Substitution Variables

$$DATEL: Date in long format (e.g. Tuesday 10 September 2019)

$$TIMEL: Time with seconds (e.g. 2:00:13 PM)

$$DATE: Date in short format (e.g. 9/10/2019)

$$TIME: Time in short format (e.g. 4:52 PM)

$$UNIX: Time in UNIX format (seconds since 1970)

Other Substitution Variables

$$DEG: Degree Symbol (Decimal 176)

$$WANIP: WAN-facing IP address, updated every 10 minutes when

used

$$SECRETKEY: User entry on the URL tab or Cloud page for UDP

communication used for token compuations. Substitution

is in context of the URL Topic for which it was entered

Page 79

$$JWT:(key):. JSON Web Token (JWT) contains information that may be

needed in endpoints of the URL endoints. For example, if

“user_id” is needed in the endpoint or the URL (or in the

data payload) then it can be references such as:

URL/https://myServer/user/$$JWT:(user_id):/statu

s

The Payload format can be customized as well. In this case if a template is entered for the payload, then
the DeviceValue, DeviceString or VSP Status that would be published in the no-template case will no
longer be part of the Payload unless $$VALUE: or $$STRING: or $$STATUS: is used as part of the
template. As a further example the following could be specified for a JSON-encoded Payload of three
items that reflect the Status of the HS Device that had just changed.

{Name:$$NAME:, State:$$STATUS:, TimeStamp:$$DATE: $$TIME:}

Topics are always published using URL encoding to assure MQTT reserved characters are not included in

the Topic. URL encoding replaces all character codes except for letters, numbers, and the following

punctuation characters:

• - (minus sign)

• _ (underscore)

• . (period)

• ! (exclamation point)

• * (asterisk)

• ‘ (apostrophe)

• (and) (opening and closing parentheses)

Payload is not URL encoded unless explicitly requested in the publish template. This is done by using

substitution variables in the publish template and including “_URI_ENCODE” in the substitution variable

name. Alternately a replacement of spaces with underscores is specified by including “_UNDERSCORE”

in the substitution variable name.

For example, consider the case where a HS Device String has content of “A’B C”.

If the publish template has $$STRING: then A’B C would be published.

If the publish template has $$STRING_URI_ENCODE:” then A%27B%20C would be published.

If the publish template has $$STRING_UNDERSCORE:” then A’B_C would be published.

The “_URI_ENCODE” and “_UNDERSCORE” suffix can be used with any of the substitution variables.

Page 80

It is possible to use expressions in the expression text box for inbound messages. They can also be used

in event action payload or device payload template by encasing the expression in “<<” and “>>”.

Nesting expressions to two levels is supported.

Examples:

$$DVA:(PI_RELAY-R1): Substitute using DeviceValue from device @ address “PI_RELAY-R1”

$$DTC:(S33): Substitute using DeviceString from device @ code S33

$$DSR:(123): Substitute using DeviceStatus from device @ reference 123

<<$$DVR:(123):*2.55>> Scale DeviceValue of device @ reference 123 by 2.55

5.3 Send MQTT via Event Action
The second mechanism to send an MQTT message is with HS Event Actions. Figure 33 shows both the

setup of an Action (MQTTTrigger2) and how an Action will be shown that has been setup (MQTTTrigger).

The user entry, as shown by MQTTTrigger2, is of the format “Topic=Payload”. The first “=” is used to

separate the two components of the message. The QOS will always be the default setup on the Client

Tab for any MQTT message sent as an Event Action.

Figure 33 MQTT Event Action

The MQTT Payload of Event Actions support substitution variables. An example use is show in Figure 34

where the “$$time:” and “$$DVR:(ref):” variables are used. In this example the Payload will include the

current time and the DeviceValue of Device with reference 138. The Value, String and Status of a device

are available for substitution. The reference, address and device code are the available methods to

identify a device. A six-character mnemonic is used to specify each of the nine combinations. These are

shown in Table 2.

Page 81

Figure 34 Substitution Variables in Event Action

It is also possible to send a set of MQTT messages from the HS Event Action. This is done by sending a

publication list that contains the message list. See Sections 5.7 and 17.8 for description and use of

publication lists. When the action is setup the list of created publication lists will be available from the

selector and if one has been previously selected for this event, it will show as the default. See Figure 35.

Figure 35 Send MQTT Publication List Event Action

A similar capability exists for requesting WLED playlist where the playlist name rather than the publist

name is specified.

Voice Monkey is able to do text to speech on Echo devices and images/videos on Echo Show devices.

The event action supports both capabilities with the default being TTS as shown in Figure 36. Other

options with Voice Monkey use JSON to specified the desired set of parameters. These are

• notification – if set to “true” then the Echo device LED ring will be illuminated and “play

notification” command used to hear the announcement and clear the LED

• image – URL of an Echo Show compatible image

• video – URL of a mjpeg file for display on Echo Sho

• websiteurl – URL of text from a web site

An example for picture with notification would be:

kitchen-show={“image”:http://myShapshotServer/last.jpg,”notification”:true}

http://myshapshotserver/last.jpg

Page 82

Figure 36 Play Voice Monkey Routine

Note that Voice Monkey can also be commanded via MQTT received messages rather than HS Event

actions. In this case the MQTT Topic format is “voicemonkey/routine” and payload similar to that used

in the event action text box. In this mode of use, mcsMQTT becomes the server to bridge MQTT

messages to Voice Monkey API.

5.4 Send MQTT via Script
The third mechanism to send MQTT message is via scripting. In this case the HS scripting command

“PluginFunction” will be used to get the mcsMQTT object and the mcsMQTT function

“SendMQTTMessage” will be used to send the message.

The prototype for “SendMQTTMessage” is

Public Function SendMqttMessage(ByVal sArray() of String) As Integer

A positive sequential number is returned with success and a -1 on failure. The array contains four

entries:

1. Topic

2. Payload

3. QOS

4. Retain

5. Optional Broker index (0.. number of brokers – 1)

The QOS parameter has the following enumerated values

Page 83

“AT_MOST_ONCE”
“AT_LEAST_ONCE”
“EXACTLY_ONCE”

The Retain parameter contains the following values

“FALSE” – Do not ask broker to retain the message
“TRUE” - Ask broker to retain the message for transmission to new subscribers

An example is below where a positive value return as an incrementing number and a negative value is

returned if there is some form of failure.

Sub Main(parm as object)

 Dim iResult as integer
 Dim sTopic as string = "Sonoff/Bedroom/Light/cmnd"
 Dim sPayload as string= "OFF"
 Dim sQOS as string = "EXACTLY_ONCE"
 Dim sRetain as string = "FALSE"
 Dim sArray() as string = {sTopic,sPayload,sQOS,sRetain}

 iResult = hs.PluginFunction("mcsMQTT","","SendMqttMessage",sArray)

 if (iResult < 0) then
 hs.Writelog("mcsMQTT","MQTT Message Failure for " & sTopic)
 end if
end Sub

A second form of the scripting send function is to send to the Messaging Sign. Its prototype and array
parameters are:
 Public Function SendSignMessage(ByVal sArray As String()) As Integer

 'return -1 on failure

 '0-Topic

 '1-Text

 '2-Row

 '3-Duration

 '4-Color

 '5-QOS

 '6-Retain

Failure is indicated as a -1 returned value. Its use is similar to the basic send function but includes the
details of information going to the sign in additional parameters.

5.5 Send Status on MQTT Request
Any HS device that has a Publish Topic defined can be queried to report its current status from a MQTT

message with the same Topic as the Publish Topic and an empty Payload. The current status that will be

either the DeviceValue or DeviceString depending upon which HS Event Trigger has been defined for the

device on the Edit tab. See Figure 28.

In this example of a non-plugin device where the status is reported on Topic Test/Status and it will

report the DeviceValue. This status will be published every time the DeviceValue changes as well as

when the Topic Test/Status is received with a blank Payload.

Page 84

The status query can also be requested by using the Subscribe (control) topic. In this second option non-

plugin devices that are status only will provide no response because no control topic will have been

defined.

When Publish (statues) topic is used then the broker will likely return the same message to the sending

client. There is no guarantee what order the broker returns to the sending client the topic sent by the

sender vs. the topic sent by mcsMQTT. If mcsMQTT is first then the "final" status will have a blank

payload. It could also result in an event in the sending or other clients as the status response transitions

between null and current status.

5.6 Sending Periodic Status
All non-Plug-in HS devices that have been “A”ssociated will have their current DeviceValue or
DeviceString published on the interval setup on the Client Tab. This serves to assure subscribers are
refreshed following unexpected mcsMQTT disconnects when the QOS will not otherwise provide this
capability.

5.7 Sending Configuration / Setup Messages
A set of Topic/Payload messages can be defined that contain the configuration of an IOT device. The list

is a text file located in the folder \Data\mcsMQTT and of file type “.pub”. Each line of the file will have a

message defined as Topic=Payload. The first four lines of the file will contain the substitution variable

definitions.

The Pub List tab is used to start the transmission of the messages. This tab can also be used to create or

edit existing publication list files. The file of interest is selected from a pull-down. If a new file is to be

created then the text box to create a new file is used to specify the file name.

Provisions exist for substitution variables $$1: through $$4: to allow a single .pub file to contain a

template which is instantiated based upon the values entered for the substitution variables.

Substitution variables do not need to be used, but their position in the .pub file does need to exist even

if the substitution value is blank.

Edit provisions via browser also exist. This can be used to create of modify a .pub file.

In the Figure 37 example a file of name LoRa.pub exists to define the frequency of three LoRa units. The

frequency is defined as $$1: to be 915. Three messages are setup to transmit this frequency to three

IOT devices. The Execute Publication List is used to initiate the publication.

Page 85

Figure 37 Publication List to Setup a Lora Frequency

5.8 Sending Messages to LED Messaging Sign

The Messaging Sign whose API is described in Section 20.19 will display text and images on a matrix of

color LEDs. Provisions have been made in mcsMQTT to facilitate use of this sign with HS.

On the Edit tab for plug-in devices a Control/Status UI of type Sign exists to indicate that published

information will be formatted for this sign. A similar provision exists for non-Plug-in devices to publish

to the sign.

The sign has on-board provisions to store twelve messages for display. The first four are stored in flash

so will persist a power cycle of the sign. The other eight will not persist a restart. Messages are updated

via MQTT topics. The twelve are identified by the topic PTEXT for persistent and TEXT for volatile. Each

is prefixed with /CMND/ and suffixed with index 1 through 4 or 1 through 8. (e.g. LedSign/cmnd/Text8”

to indicate the 8th volatile text message.

When a Sign type selected and the “A”ssociate checkbox used to create to HS device then buttons are

created to correspond to each display row on the sign. See Figure 38. The status will indicate the row a

message is being displayed on the sign. The button will cause a message to be sent to the specified row

of the sign or to remove the message from the sign’s buffer. The color and duration parameters from

the setup of the sign are also sent.

Figure 38 Control/Status UI setup in Device Management to Support Sign Type

Page 86

The user can use the buttons on the UI or it can store into DeviceValue the 0, 1 etc. to affect the desired

result. The sign’s feedback will indicate which row the message is showing. If the HS DeviceString is null

then this status will appear on the Device Management page. The row status is also available in the

DeviceValue.

The color and other parameters for the sign are entered from mcsMQTT from the Edit Tab on the

hyperlink “Configure Sign Parameters”. These parameters include the duration in minutes that a

message will be retain for display, the row on which the message will be shown and the color of the

message. The color can also be embedded in the text of the message using “[RRGGBB]” notation to

change the color of the text for the subsequent characters. A default text string that can be used for

text or image path can also be entered and will be used if publish Template and HS DeviceString are null.

MQTT has a limit of 128 characters for a payload. It the message exceeds this then mcsMQTT will split it

into multiple transmissions and the sign will reassemble them so it appears that a long message has

been received. The limits of the sign are 80 characters for non-volatile (PTEXT1 through 4) and 320

characters for the others (TEXT1 through TEXT8). mcsMQTT will enforce this and truncate extra

characters so a user need not be concerned about message length for a successful transmission.

The sign also has provisions for display of images. If the payload of a message going to the sign is a file

path to a jpg image, then mcsMQTT will transmit the binary for the jpg per the API defined in Section

20.20.2. The image can be scaled by a percentage of the capability of the sign’s resolution. By default,

this resolution is 16 x 40 pixels. 10,000 bytes are reserved in the sign to hold the compressed jpg image.

If mcsMQTT recognizes that the image specified with scaling will not fit then it will scale it progressively

smaller in 10% increments until it will fit prior to transmission.

Experience has shown that good results occur when the image is 100% to 200% of the screen size.

There will be sufficient content at any point in time as the image pans to be able to recognize the image.

Lower scaling may result in poor recognition because of the resolution of the screen. Higher scaling will

result in difficulty in recognizing the image content in the viewport provided by the sign.

Provisions have been made to extract information from the HS log to be sent to the screen. This is

described in Section 5.8.1.6 as well as more in the introduction to Section 6. Otherwise, the text of the

message or the file path of the image are generally contained in the DeviceString of the device that has

been assigned the Sign as its Control/Status type. All HS log entries sent to the sign are done on topic

TEXT8.

Provisions also exist to monitor a file name or file folder for an update to a jpg image and then send the

updated image to the sign. This is described in Section 5.8.1.8. All images are sent using the IMAGE

topic.

When using the Sign, a strategy should be developed for how each row is to be used. For example, the

first row is for messages that need user attention and the second row is for messages that are just

informational.

The Sign will automatically scroll through each of its twelve message buffers and show any that have a

non-zero duration. This will be done in a round-robin manner with a three-character space between

each message.

Page 87

The Sign Duration parameter should be selected so that stale messages are removed automatically and

set to 65535 for those that need user attention so they can be manually acknowledged. Use of PTEXT

rather than TEXT as the Topic is also appropriate for important messages that need to persist power

cycles or restarts of the Sign.

5.8.1 Messaging Sign Use Cases
The following discussion provides concepts of how mcsMQTT can support use of the Messaging Sign. In

all cases HS devices will exist with the Control/Status UI having been selected as the type. For plug-in

devices this is the radio on the Edit page. For non-Plug-in devices this is also a radio on the Edit page

label “Publish To Sign” as shown on Figure 28.

5.8.1.1 Send Text to Sign when HS DeviceString Changes

When the DeviceString of any HS device receives a change in its content then the text of the string will

be stripped of any HTML encoding and sent to the sign. The duration that the text will continue to be

displayed, color information and the row on the sign and on the sign are setup from the “Configure Sign

Parameters” hyperlink on the Edit tab. See Figure 28 and Figure 29. The topic used is taken from the

Publish topic that is setup on either the Edit tab or the Association tab.

If the Sign’s corresponding status topic has been associated to a HS device then the Sign will

acknowledge receipt of the text by echoing the row number on which the text was displayed. For

example, if published to topic LEDSign/cmnd/TEXT2 then the Sign will publish acknowledge status on

LEDSign/TEXT2. If the duration countdown expires then the Sign will again publish LEDSign/TEXT2 but in

this case the payload will be 0 to indicate that the text is no longer being displayed on the sign.

5.8.1.2 Send Augmented Text to Sign when HS DeviceString Changes

This scenario is the same as the first scenario but additional text is added to the DeviceString content to

provide context of the text. An example is Caller ID being available from HS and it is to be sent to the

screen when a call is received. The CID will be contained in a non-Plug-in DeviceString.

In this case the Publish Template from the Edit page is used to provide a prefix “CID:” along with

substitution variable $$STRING:. The Publish Template text box would look like “CID:$$STRING:”

mcsMQTT would then pull the DeviceString text and append it to the “CID:” prefix before sending the

Sign. The duration parameter on the Sign Parameters popup (Figure 29) in this case would likely be

relatively short such a one minute since the CID info only has immediate use. After one minute the Sign

will remove the CID message.

5.8.1.3 Send Static Text to Sign

Consider a scenario where the text to be sent is predefined such as “Amber Alert” and an HS

DeviceValue changes when the “Amber Alert” is occurring. The HS DeviceString will be null and the

Publish template will be null. The Default Text in the Sign properties popup (Figure 29) is set to “Amber

Alert”.

For discussion let us use the LedSign/cmnd/TEXT2 as the Publish Topic and Sign Duration of 65535 to

indicate that the message will continue to be shown until manually removed. The plug-in device

“A”ssociated with Topic LedSign/TEXT2 will have a “Off” button that can be used to do the removal.

Alternately the DeviceValue of the plug-in device can be set to 0. Either of these actions cause a

Page 88

LedSign/cmnd/TEXT2 Topic to be sent with a payload containing a JSON content of Duration being 0 that

supersedes the 65535 minutes originally sent.

5.8.1.4 Send Text to Sign via Script

In this scenario consider an irrigation Plug-in such as mcsSprinklers where the predicted date of the next

irrigation cycle is desired. In this case the mcsSprinklers Plug-in script function needs to be called to get

the predicted date and then from the script one would use the mcsMQTT Plug-in function

SendSignMessage to send a MQTT message per the JSON format expected by the sign. See Section 5.4

for information on the scripting within mcsMQTT.

In this scenario the script formats the text as desired before passing it along with the parameters for

row, duration and color used in the SendSignMessage Plug-in function. There is no dependence on any

other HS device for this operation to function. Status feedback from the Sign does continue to be

provided in the HS device “A”ssociated with the corresponding TEXT or PTEXT topic.

5.8.1.5 Send Augmented Text to Sign when DeviceValue Changes

In this scenario consider a HS DeviceValue that contains the daily energy use that is updated every

minute. The implementation of this scenario is the same the one described in Section 5.8.1.2 except the

substitution variable is $$VALUE: rather than $$STRING: to indicate that mcsMQTT should pull the value

from DeviceValue rather than DeviceString.

Each time the DeviceValue changes an updated message will be sent to the sign to replace the one that

was previously viewed. In this case the Sign Duration parameter could be set to something like 2

minutes so the message will be removed from the sign if it becomes stale.

5.8.1.6 Send all HS Log Entries to Sign Generated by Specific Plug-in

On the Publist/Sign tab Messaging Sign Setup section is a text box where a regular expression can be

entered to specify a filter for HS Log entries. If, for example, the plug-in of interest is mcsSprinklers then

it will place the text “mcsSprinklers” in the Log’s type/error column. This is what would be used in the

regular expression to indicate any occurrence of this text.

At this same location is a radio to enable use of the HS log as source of messages to the Sign.

The TEXT8 topic will be used for HS Log publications to the Sign. The Publish Topic will be setup to be

something like “LedSign/cmnd/TEXT8”. The Sign Parameters popup ((Figure 29) contains a radio to

select HS Log entries to be sent to Sign.

The other Sign parameters should also be setup as desired. In the HS Log case the Color parameter is

ignored and the color used by the HS Log will also be used by the Sign.

5.8.1.7 Send Jpeg Image to Sign

A Topic similar to “LedSign/cmnd/IMAGE” is used to deliver an image to the Sign. The image will

supersede any text that is currently being displayed. A subsequent text message to screen will remove

the image from the Sign.

The jpg file name can be contained in DeviceString or Sign Properties popup Default Text property.

When a DeviceString changes, mcsMQTT will look at the last four characters for “.jpg” and send the file

content rather than sending the text. If the file does not exist then nothing will be sent.

Page 89

All the methods described in the text-oriented scenarios can be used for images but the Publish Topic

should use the IMAGE rather than the TEXT or PTEXT keywords

5.8.1.8 Automatically Send Updated Jpeg Charts to Sign

On the Publist/Sign tab Messaging Sign Setup section is a text box where a file name or a folder name

can be entered. mcsMQTT will monitor this location and every ten seconds when the last change date

changes for a .jpg file then it will scale the image and send it to the Sign. The remaining setup is the

same as used from HS Log monitoring described in Section 5.8.1.6 except file monitor radio is selected

and the only other Sign parameter of interest is the image scaling percentage.

If a folder is being monitored then mcsMQTT will select the most recent file if multiple files change in

the last ten seconds. Charts that have fine detail will perform poorly with this use due to the resolution

of the Sign. Things like Area and Column charts will have more success than Line or Scatter charts.

5.9 Sending MQTT Messages via HTTP/Browser Parameters

5.9.1 Send a Topic with Payload
A request made to the HS HTTP server to the MQTT page with querystring parameters of Topic and

Payload will result in a MQTT message being sent. By default the Broker to be used is the first one, but

can be changed by using the parameter Broker. QOS and Retain parameters are also supported if the

defaults are not to be used. To illustrate the following will send a MQTT message to Topic xyz with JSON

payload {“a”:”b”} using the Broker at 192.168.5.6 and with QOS of 1.

HS4: http://localhost/mcsMQTT/MQTT.html?Topic=xyz?Payload= {“a”:”b”}?QOS=1

HS3: http://localhost/ MQTT?Topic=xyz&Payload= {“a”:”b”}&QOS=1

This capability is typically used in scenarios where a widget is able to communicate via HTTP by sending

at URL and has no capability to use MQTT. mcsMQTT will provide the standardization of communication

so other capabilities such as a HS Event based upon receipt of MQTT message or an associated MQTT

Topic. The Shelly Wall Display is an example of one such device that only has capability to use HTTP in

its Actions.

5.9.2 Send a Voice Monkey request for Alexa
The syntax of Voice Monkey via Browser or other tools capable of making a URL request is similar to the

syntax used for Voice Monkey event actions. An additional parameter “Payload” is used to specify the

text that is to verbalized. See Section 5.3. For example:

http://localhost/mcsMQTT/MQTT.html?VoiceMonkey= speak-den?Payload=Voice Monkey Test

5.9.3 Send a WLED Playlist request
The syntax of WLED playlist request via Browser or other tools capable of making a URL request is

similar to the syntax used for WLED event actions. See Section 5.3. The parameter IP is used ot specify a

specific WLED interface. For example:

http://localhost/mcsMQTT/MQTT.html?WLED= myFavorites?IP=192.168.1.55

Page 90

5.10 Monitoring Ability to Send and Receive via Broker
mcsMQTT monitors the Broker connection on ten second intervals. If a connection is lost it will attempt
reconnection. This will be followed by resubscription. This background activity should be transparent to
the mcsMQTT user except for those who are using the Broker Connection Trigger. Events with this
trigger can be setup for either disconnect or connect transitions as shown in Figure 39.

Figure 39 MQTT Broker Connection Event Trigger

Page 91

6 Receiving MQTT Topics
Telemetry, sensors and other devices that provide current information via MQTT can be captured in HS

Devices. Triggers can also be raised by either the reception of a Topic or after a Topic has not been

received for a specified time.

The default mode of operation of mcsMQTT is that it is listening to all topics available from the broker.

This is referred to as Discovery and can be deselected from the Client Tab Inbound (Subscription) Section

of Figure 40. This mode is good when initially building the HS/MQTT relationships or when new MQTT

topics are being introduced to the environment. When a stable environment has been achieved the

mode can be changed to only “Listen for only Associated messages and those messages that are used as

MQTT event triggers. This will reduce the volume of traffic being sent between the broker and

mcsMQTT to be only those topics which will result in a change in HS devices. This also means that the

Payload shown in Figure 30 will only be updated for the “A”ssociated devices.

The default is also that published messages are not shown on the Association tab rows. When the echo

feature is enable on the Client Tab Inbound (Subscription) Section of Figure 40 any published message

will be visible on the Association tab as a subscribed topic if Discovery is enabled. If Discovery is not

enabled then the Topic can be made visible from the Manual page by entering the specific subscription.

Topics received that match the subscription template option will be available for management on the

Association tab unless rejected by other settings. They can be hidden from view on the Association tab

by using the “R”eject column checkbox. In this case the messages are still recorded in history, but not

visible on the Association tab. The Client tab provides a Reject Topic Template where a set of

wildcarded topics can be entered to firewall reception of these Topic. In this case they are not recorded

in the history.

When an Association of MQTT Topic is made to create a HS plug-in device the device will be placed in a

Location2 (Floor) and Location (Room) as determined by the MQTT topic or can be at fixed locations if a

default location is setup on the Client tab. This location can be edited from the Edit tab or can be edited

in HS Device Management. Rather than the location being dependent on the MQTT Topic it can also be

specified so that all new mcsMQTT devices go into the same Location2 (Floor) and Location (Room). The

Client tab Inbound section provides the ability to make this choice and select the locations to be used.

The Payload items are stored in HS Features (HS4) or HS Child Devices (HS3). The Feature or Child

Device will be organized under HS Devices (HS4) or HS Parent Devices (HS3). The Device into which the

Features and Child Devices are grouped is normally created using the MQTT Topic hierarchy. Given a

Topic of “Test/Me” there will be a Device Test and a Feature Me created when an Association is made.

Two options exist to modify this Device/Feature relationship within HS. One is on the Client Tab setting

for “Default HS Parent Device”. When this option is used any new association made will use a static

Parent Device. This approach minimizes the number of Parent Devices that are created. Once a Feature

has been created the parent to which is grouped can be changed from the Edit Tab, “Grouping Parent

Ref” text box.

Page 92

Page 93

Page 94

Figure 40 Client Tab Inbound and Outbound Setup Options

6.1 Receive MQTT Payload in HS Device
Figure 27 through Figure 31 are used to setup the mapping between a MQTT Topic and HS Device. The

received Topics will be listed on the Association Tab and a HS device created for each where the

“A”ssociated checkbox is used.

The received list will be formed from all the Topics that were delivered by the MQTT Broker with

subscription to “#”. In addition, special Topics can be specified in the Edit tab. This provision is to

handle the special cases not covered by “#”.

The MQTT Payload can be either raw text or it can be text formatted using JSON. mcsMQTT will parse

the JSON and create a mapping for each JSON element into an HS Device. A “:” is used in the Topic

name to indicate that part of the Topic is based upon the JSON Payload. In Figure 30 all rows were

formed from one MQTT Topic with Payload encoded with JSON keys. The Topic “GarageDoor/Uptime”

is shown as having JSON formatted Payload content for “Time” and for “Uptime”. The “:” is used to

identify that everything to the right of the “:” is part of the JSON Payload.

Take for example the following MQTT message. In this case there are two levels of JSON formatting. As

one example a row will be shown for “Sonoff120/STATE:Wifi:AP” because the “Wifi” value is further

decomposed into multiple components using JSON.

Page 95

 Topic: Sonoff120/STATE
Payload: {"Time":"2017-12-02T03:38:30", "Uptime":0, "Vcc":3.007, "POWER":"OFF",
"Door":"CLOSED", "Wifi":{"AP":1, "SSId":"default", "RSSI":100, "APMac":"40:16:7E:A2:EE:68"}}

JSON data format consists of an optional group specification starting with “[“ and ending with ”]”.

Inside the group (if it exists) are sets of key-value pairs between a starting “{“ and an ending “}”. The

key-value pair is separated with a “:”. If the value is text, then it is encased in quotes. If it is numeric

then it is not encased in quotes. The key, since it is text, should always be in quote, but mcsMQTT is

tolerant of keys that do not have quotes.

The last Payload for the Topic is shown and if “A”ssociated then it will also be placed in the mapped HS

Device. If numeric it will be put in the DeviceValue otherwise in the DeviceString. Provisions also exist to

setup Value-Status Pairs (VSP) so that DeviceValue rather than DeviceString is updated. This is desirable

because HS has a richer set of features for Values than Strings.

It is common for an IOT device to respond to a command with some form of acknowledge and also for

the device to periodically report its state. There two activities will be published on different topics but

the represent the same information. Section 4.1.28 describes how multiple topics can report status

into a single HS device.

mcsMQTT will observe the Payload history of a Topic and select VSPs, Numbers or Text as the most

appropriate type of Payload mapping to HS Device. The selection can be changed on the Edit tab by

selecting a radio for the HS Device Control/Status UI. VSPs are used for Button and List. HS Devices

created with Button type will take a snapshot of the received text values to setup the VSP for the HS

Device. They can be manually edited later. Devices of type List will continue to automatically update

the VSPs as new text is received in the payload. These also can be manuallyed edited. Types of

valuesNumber and NumberChange are used for numeric Payload. Type NumberChange will only update

the HS DeviceValue if it has changed. Text is used for random strings. Color Picker is also available for

special case of asking HS to show a color picker control for the Device. Three forms exist for the Color

Picker. The ColorXY is used if the end point is an XY color space. HSBColor for control using Hue,

Saturation and Brightness. The other is used if #RGB is the payload format. Button is used for two state

VSPs and List used for longer ones. Special cases exist for Payloads of ON, OFF, OPEN, CLOSED, OFFLINE,

ONLINE, FALSE, TRUE, DISARMED, ARMED, INACTIVE, ACTIVE where the 0 and 1 values are fixed (e.g.

OFF=0, ON=1). For other cases the values are selected based upon order observed in the Payloads.

6.2 Payload Transformations
In some situations there may be only a part of the payload that is of interest or some textual

transformation is desired on the payload before further process and mapping into HS. Regular

Expressions can be used to achieve this objective. The result of the RegEx will change the visible Payload

in the Association table so this the case where the Payload may not match what is actually received from

the MQTT Broker.

The Regualar Expression parameters are available on the Edit tab.

Regular expressions are for textual transformation such as extracting key date from a long string or

changing a character into another (e.g. comma to decimal or date M/D/Y to Y/M/D). The pattern box is

Page 96

used to specify the match pattern. If the pattern is left blank then the Payload will be placed in the

Device and no regular expression activity will be performed on the Payload.

The match radio is to specify the regular expression mode. When unchecked it is set to replacement

mode. When checked it is in extract mode. Replacement mode uses to the pattern to find matches in

the Payload and change those matches to what is contained in the replacement text box. Extract mode

looks for text that matches the pattern and uses it as what is placed in the HS Device. The second text

box in this case is used to identify which of multiple matches are to be used. If blank then the first will

be used. If no matches are found then null is placed in the HS Device. If the number of matches

specified is not found then the last one will be used. A large number in the second text box could be

entered to extract the last instance of the match in the Payload.

The pattern text box is used to for substitution for the match criteria when in replacement mode. The

second text box is used to specify the match instance number when in extract mode. If the pattern is

valid the result of the regular expression applied to the Payload will be placed in the Device. If the

replace box is left blank then the match text will be replaced with null text.

Syntax reference for regular expression supported by mcsMQTT can be found at
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-

quick-reference. Note that this reference is for the PERL/.NET syntax. Quite often online RegEx

expression analyzers use Java or other conventions. While the concepts are similar there is some

variance in the symbols and their use.

https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference

Page 97

A few simple examples below.

1. Change period to comma in a number “1.23”

Pattern: \. (look for a “.”, it needs to be escaped with \)

Extract Checkbox: Unchecked

Replace: ,

Result: 1,23

Note: \. is escaped “.” Because “.” is reserved. Every instance of “.”

Will be changed to “,” so could fail if mining large text string

2. Remove suffix “ seconds” suffix from a Payload of “1234 seconds”

Pattern: seconds

Extract Checkbox: Unchecked

Replace:

Result: 1234

Note: replace suffix of “ seconds” with null. Note alternate method using

general rather than specific suffix in next example

3. Extract numeric part of Payload of “1234 seconds”

Pattern: \D+

Extract Checkbox: Unchecked

Replace:

Result: 1234

Note: pattern is consecutive set of non-digits

4. Transform date from YYYYMMDD to MMDDYYYY format in "2018/10/01T00:24:18"

Pattern: (\d+)-(\d+)-(\d+)(T)(.+)
Extract Checkbox: Unchecked

Replace: $2/$3/$1 $5

Result: 01/10/2018 00:24:18

Note: use of “()” provides sequenced substitution groups that are stored in

$1, $2 etc. The first group will capture the year. The second will be the

month. The third will be the day. Between these groups a “-“ is needed.

The “T” is then needed and defined as group $4. $5 will contain the

remainder to string. The replace transforms the order, changes “T” to “ “

and “-“ to “/”.

5. Extract last segment of IP “192.168.1.100”

Pattern: \d+
Extract Checkbox: Checked

Replace: 4
Result: 100

Note: four groups of digits are detected because the period delimits the
digit group. The Replace text indicates that the 4th match is to be
extracted.

Page 98

6. Change IP address (192.168.5.127) to a hyperlink (courtesy of bartz, HS board)

Pattern: (.+)
Extract Checkbox: Unchecked

Replace: $1

Result: 192.168.5.127

7. Extract a value for a JSON key such as “Action” in

{“status”:”online”,”Action”:”stop”,”IP”:”192.168.0.1”}. Note JSON decoding is

normally done by mcsMQTT, but for cases where nexted JSON is used then this could

be useful. Assume the JSON key is Action:

Pattern: ((.*)Action:(.*)(,.*))
Extract Checkbox: Unchecked

Replace: $2

Result: “stop”

Note: The first group is everything before the text Action: The second

group is everything after it until group 3. The third group is then the

remainder after the comma. The second group is the Action value of interest

so the $2 is the replacement.

Page 99

6.3 Payload Numeric Transformations
Four forms of numeric transformation are available and are invoked for “A”ssociated Topics. If no

transformation is specified on the Edit tab, then the raw Payload will be placed in the HS Device.

A low pass filter can be used to reduce the noise of a Payload input. The filter sensitivity is set near 0.0

to make the make the value very stable thus reflecting only longer-term trends. Sensitivity near 1.0 will

have very little smoothing effect.

An arithmetic expression can be used for simple conversion of units to complex functions. The

expression can be specified using a combination of math operators (e.g. +), functions (e.g. round, sin,

int), and replacement variables (e.g. $$PAYLOAD:). See Table 2 for lists of replacement variables and

Table 3 for available expression functions. As an example, the following will converts Payload in inches

to centimeters with one digit precision: “(round($$PAYLOAD: * 2.54,1)”

An additional HS Device can be created to capture either the derivate (rate) or integral (accumulation) of

the Payload input. When the Device is created via checkbox selection it is associated with the base

device. This will result in HS always keeping these grouped together such as shown in Figure 41.

Figure 41 Base, Rate, and Accumulation Device Associations

A rate device contains a sensitivity factor. A sensitivity of 1.0 will result in the rate determined only by

the last two payload inputs received. As sensitivity approaching 0.0 will result in a very slow changing

rate. The time units can also be selected between per second, per minute or per hour.

An accum device contains a provision to reset the accumulation at midnight. When enabled the

accumulation device value will be set to 0 at midnight. The accumulation device will behave in one of

two ways when reset at midnight. One is to treat the midnight value as the starting point and the accum

device will reflect the change since the midnight value. The other is to set the midnight value to zero

and the accum device will accumulate the values that are received throughout the day.

Status formatting for numeric values is left up to the user using the Status-Graphics edit capability of the

HS3 Device Management or HS4 Devices browser page. Figure 42 is an example of a user edit to change

the Status format displayed to “XX Minutes”.

Page 100

Figure 42 Edit of Status for Numeric Devices

6.4 Payload OtherTransformations
Expressions can also be used where the result is text that will be stored in DeviceString. Date and

currency formatting are examples. There are also extensions to math functions that can be used for

numeric transformations that will be stored in DeviceValue. If the result of a transformation is to be

stored in DeviceValue then the type will typically be “Number”, but could also be “Button” or “List”. If it

is stored in DeviceString then it will be “Text”.

An example of a transformation from a Unix/Epoch date/time format into a local time format would be

the expression “Local_DateTime($$PAYLOAD: ,”d MMMM YYYY h:m:s tt”)” where the payload may be

something like “1554758969”. This would result in “8 April 2019 9:29:29 PM” being stored in the HS

DeviceString.

The prototypes of functions supported are listed in Table 3.

Of special note is “IfChange” as it will inhibit the publish operation if a null string value is returned. It

takes three parameters. The new value, the previous value, and the hysteris threshold. If the value’s

magnitude difference from the previous value is more than the threshold then the function will return

the new value, otherwise it will return a null string. The threshold can be specified as a number or as a

numeric string suffixed with “%”. Its typical use will be in the publish payload template for non plugin

devices where the desire is to inhibit publishing MQTT messages when only a small change occurs in the

HS device value. The following three examples for the publish payload template will inhibit where

device value changes by less than 5% and by less than 20. In the first two cases the delta is from the

prior HS DeviceValue and the third is the case when it is the delta of the Payload from the last time the

Topic was published.

<<IfChange($$VALUE:,$$PREVIOUS:,”5%”)>>

<<IfChange($$VALUE:$$PREVIOUS:,20)>>

<<IfChange($$VALUE:$$PUBLISHED:,20)>>

Page 101

Table 3 Expression Functions

Math Functions
Public Function Sin(ByVal v As Double) As Double
Public Function Cos(ByVal v As Double) As Double
Public Function Tan(ByVal v As Double) As Double
Public Function ArcSin(ByVal v As Double) As Double
Public Function ArcCos(ByVal v As Double) As Double
Public Function ArcTan(ByVal v As Double) As Double
Public Function Sqrt(ByVal v As Double) As Double
Public Function Power(ByVal v As Double, ByVal e As Double) As Double
Public Function Limit(ByVal v As Double, ByVal eMin As Double, eMax as Double) As Double
Public Function Mod(ByVal x As Double, ByVal y As Double) As Double
Public Function Min(ByVal v1 As Double, ByVal v2 As Double, _
 Optional ByVal v3 As Double = Double.MaxValue, _
 Optional ByVal v4 As Double = Double.MaxValue, _
 Optional ByVal v5 As Double = Double.MaxValue) As Double
Public Function Max(ByVal v1 As Double, ByVal v2 As Double, _
 Optional ByVal v3 As Double = Double.MinValue, _
 Optional ByVal v4 As Double = Double.MinValue, _
 Optional ByVal v5 As Double = Double.MinValue) As Double
Public Function Abs(ByVal val As Double) As Double
Public Function Floor(ByVal value As Object) As Integer
Public Function Ceiling(ByVal value As Object) As Integer
Public Function Int(ByVal value As Object) As Integer
Public Function Trunc(ByVal value As Double, ByVal prec As Integer = 0) As Integer
Public Function Dec(ByVal value As Object) As Double
Public Function FromHex(ByVal value as Object) as Double (e.g. “0A” → 10.0)
Public Function Round(ByVal value As Object, ByVal prec As Integer = 0) As Double
Public Function Exp(ByVal base As Double, ByVal pexp As Double) As Double
Public Function Rnd() As Double

Page 102

Conditional Functions
Public Function [If](ByVal cond As Boolean, ByVal TrueValue As Object, ByVal FalseValue As
Object) As Object
Public Function IfEQ(ByVal Parm1 As String, ByVal Parm2 As String, ByVal TrueValue As
String, ByVal FalseValue As String) As String
Public Function IfGT(ByVal Parm1 As String, ByVal Parm2 As String, ByVal TrueValue As
String, ByVal FalseValue As String) As String
Public Function IfLT(ByVal Parm1 As String, ByVal Parm2 As String, ByVal TrueValue As
String, ByVal FalseValue As String) As String
Public Function IfChange(ByVal value as Object, _
 ByVal previousValue as String, _
 ByVal threshold as String) as String

If value and previousValue are numeric then return null if value from previousValue
is under threshold. Threshold can be number or percent if % is suffix. It not
numeric then compare of two string with equality returning null string.

Public Function IfDelta(ByVal value as Object, _
 ByVal previousValue as String, _
 ByVal threshold as String) as String

If value and previousValue are numeric then return previousValue if value from
previousValue is under threshold otherwise return value. Threshold can be number or
percent if % suffix is used on threshold.
Example IFDELTA($$PAYLOAD:,$$DVR:(4038):,"10%")
Example IFDELTA($$PAYLOAD:,$$DVR:(4038):,5

Public Function Case(ByVal variable As String, ByVal value As String, ByVal out As String)
As String
 Variable is item being evaluated
 Value is string of semicolon-separated values
 Out is string of semicolon-separated result for each value. If out contains more
 items than value then last out will be the else result.
 Example CASE($$PAYLOAD:,”10”;20;30”,”0;100;255;-1” will return 0, 100,255 or -1
 depending upon the payload being 10, 20, 30 or something else

Page 103

String Functions
Public Function Trim(ByVal str As String) As String
Public Function LeftTrim(ByVal str As String) As String
Public Function RightTrim(ByVal str As String) As String
Public Function PadLeft(ByVal str As String, ByVal wantedlen As Integer, ByVal addedchar As
String = " ") As String
Function Replace(ByVal base As String, ByVal search As String, ByVal repl As String) As
String
Public Function Substr(ByVal s As String, ByVal from As Integer, ByVal len As Integer =
Integer.MaxValue) As String
Public Function Len(ByVal str As String) As Integer
Public Function Lower(ByVal value As String) As String
Public Function Upper(ByVal value As String) As String
Public Function WCase(ByVal value As String) As String
Public Function Format(ByVal value As Object, ByVal style As String) As String
Public Function Char(ByVal c As Integer) As String
Public Function ChCR() As String
Public Function ChLF() As String
Public Function ChCRLF() As String
Public Function Split(ByVal s As String, Optional ByVal delimiter As String = ",") As
String()
Public Function SRound(ByVal value As Object, ByVal prec As Integer = 0) As String
Public Function Hex2(ByVal value As Object) As String (15 -> “0F”)
Public Function Hex4(ByVal value As Object) As String (15 -> “000F”)
Public Function ToHex(ByVal value As Object) As String (15 -> “F”)
Public Function FromHexString(ByVal value As String) As String (e.g. “41 42” → “AB”)
Public Function RGB(ByVal value As Object) As String (e.g. 255 → “0000FF”)
Public Function RGBJSON(ByVal value As Object) As String (e.g. FF00FF →
{“r”:255,”g”:0,”b”:255)

Date Functions
Public Function Now() As DateTime date and time in local format
Public Function Today() As String date in local format
Public Function Time() as String time in local format
Public Function [Date](ByVal year As Integer, ByVal month As Integer, ByVal day As Integer)
As DateTime
Public Function Year(ByVal d As DateTime) As Integer
Public Function Month(ByVal d As DateTime) As Integer
Public Function Day(ByVal d As DateTime) As Integer
Public Function WeekDay(ByVal d As DateTime) As Integer
Public Function NameOfDay(ByVal d As DateTime) As String
Public Function Format_DateTime(ByVal d As Object, ByVal fmt As String) As String (d is
number then local Unix/Epoch time. d is date then local datetime. Otherwise now. See
https://learn.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-
strings for fmt)
Public Function Local_DateTime(ByVal d As Object, ByVal fmt As String) As String (d is
number then GMT Unix/Epoch time. d is date then GMT datetime. Otherwise now. See
https://learn.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-
strings for fmt)
Public Function Unix_time(ByVal n As Object) As String will be obsoleted with use of
Format_DateTime and Local_DateTime can perform the same function
Public Function Unix_date(ByVal n As Object) As String will be obsoleted with use of
Format_DateTime and Local_DateTime can perform the same function
Public Function Long_date(ByVal d As DateTime) As String will be obsoleted with use of
Format_DateTime and Local_DateTime can perform the same function

https://learn.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings
https://learn.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings
https://learn.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings
https://learn.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings

Page 104

Public Function Long_time(ByVal d As DateTime) As String will be obsoleted with use of
Format_DateTime and Local_DateTime can perform the same function
Public Function Format_date(ByVal d As DateTime, ByVal fmt As String = Nothing) As String
will be obsoleted with use of Format_DateTime and Local_DateTime can perform the same
function
Public Function DateAdd(ByVal Interval As String, ByVal Delta As Integer, ByVal d As
DateTime) As DateTime where Interval is
"dayofyear","weekofyear","year","quarter","month","week","day","hour","minute","second"

Misc Functions
Public Function Money(ByVal d As Object) As String
Public Function [If](ByVal cond As Boolean, ByVal TrueValue As Object, ByVal FalseValue As
Object) As Object
Public Function Entry(ByVal n As Integer, ByVal s As String, ByVal delim As String = ",") As
String
Public Function Index(ByVal s As String, ByVal search As String, ByVal delim As String =
",") As Integer
Public Function Inlist(ByVal search As String, ByVal list As String, ByVal delim As String =
",") As Boolean
Function DbNull() As System.DBNull
Public Function FileExists(ByVal f As String) As Boolean

Public Function FileInfo(ByVal f As String) As IO.FileInfo

Public Function BasicAuth(ByVal username As String, ByVal password As String) As String

Public Function AES128(ByVal svalue As String, ByVal sKey As String) As String

Public Function MD5Hash(ByVal input As String) As String (e.g. MD5HASH(“username:pw”))

Page 105

Operators

operator_plus +
 operator_minus -
 operator_mul *
 operator_div /
 operator_percent %
 open_parenthesis (
 comma ,
 dot .
 close_parenthesis)
 operator_ne <>
 operator_gt <=
 operator_ge >=
 operator_eq =
 operator_le <=
 operator_lt <
 operator_and and
 operator_or or
 operator_not not
 operator_concat &

any word starting with a letter or value_identifier

 value_true true
 value_false false

any number starting 0-9 or .

 value_number

any string starting ' or "

 value_string
 open_bracket [
 close_bracket]

Page 106

6.5 Payload Storage

6.5.1 Plugin Device Features
The Payload of a MQTT message will usually be stored in the “A”ssociated HS device in either the
DeviceValue or DeviceString property of the device. The selected property will depend upon the setup
of the Control/Status UI and Store Payload lines on the Edit tab for the Device/Topic as highlighted in
Figure 44.

Anytime Control/Status UI is selected to be “Text” or “Sign”, or Store Payload is selected to be “Device
String” then the Payload will be stored in the Device String of the HS Device.

If Control/Status UI is selected to be “jpg File” the Device String will contain HTML for thumbnail image
of the Payload stored in a file at HS subfolder \html\mcsMQTT\File\{floor}\{room}\{name}.jpg and the
Device Value will increment for each time the Topic is received.

When Control/Status UI is selected to be List or Button then a VSP relationship will be setup that uses
the text in the Payload to map into a number and then mcsMQTT will update DeviceValue with the
number.

When Control/Status UI is selected to be Number or NumberChange then the Payload is expected to be
numeric, or has become numeric after using regular expression or expression capability of the Edit tab.
The number will then be stored in DeviceValue.

When Control/Status UI is selected to be RGB, RGBW or HSB then the Payload is interpreted as a color
space definition and mcsMQTT will convert it into a 24-bit number and stored in DeviceValue

When Control/Status UI is selected to be Slider then the Payload is expected to represent a percentage
in the range of 0 to 100. It may be necessary to use numeric expressions on the Edit tab to transform
the payload into a number of this range. The result will be stored in DeviceValue.

When Control/Status UI is selected to be CSV then the Payload is assumed to be a comma-separated set
of numbers. A HS device will exist for each number and the DeviceValue will be updated.

When Control/Status UI is selected to be Ramp then then a slider control and a rate number box is
presented for this topic. The slider will range from 0 to 100 (percent). The rate will be the number of
seconds for the slider value to go from 0 to 100. The example shown in Figure 43 will send commands at
a rate of (100 seconds / 100% = 1 second rate) with each command being an increase or decrease of 1%
value. The commands will stop when the target level is achieved.

Figure 43 Transition Rate Ramp Contorl/Status UI

Page 107

Figure 44 Override to Store String rather than Value

Page 108

6.5.2 Non-Plugin Device Features
MQTT Payloads that are associated with HS Device Features have a more restrictive capability to update

HS DeviceValues and DeviceStrings. The MQTT Page, Edit Tab, Store Payload radio will identify if the

Payload will update the Value vs. String property of the HS Feature.

It is still possible to use Expressions and Regular Expressions to transform the received Payload prior to

updating the HS Feature.

A special case is available where DeviceValue is being updated, but the Payload is text. If the text

matches the Value Status Pairs (VSP) defined in HS for the Feature, then mcsMQTT will do the VSP

lookup to store the matching DeviceValue when the Payload is received.

6.6 Controlling HS Device via MQTT Topic
Lists of MQTT Topics that have been received are available for mapping into HS Devices on the

Associations Tab. The “A”ssociated checkbox or existing Device Reference is used to establish this

relationship. For mcsMQTT devices, Numeric changes in Payload are reflected in the HS DeviceValue.

Non-numeric Payload is reflected in DeviceString. The special case of Payload text of case-insensitive

ON, OFF, TRUE, FALSE, OPEN and CLOSED create a Device-Status pair with DeviceValues of 0 and 1 or

OFF/CLOSED and ON/OPEN, respectively.

The setup described previously in Section for associating Topics and Devices did not include the case

where an existing HS Device is to be controlled by a MQTT Topic. This setup is done in one of two ways.

The first is done on the Association Tab by entering a non-Plug-in Device Reference for a subscribed

Topic rather than using the “A”ssociate checkbox. That will associate the subscription as if it is a

command to control the existing HS Device. It can also be done on the Edit tab in either the Publish or

Subscribe tables. When the Association table is built with this hybrid type setup the row color will be

blue rather than pink or green. Figure 45 provides an example where non-Plug-in Device 72 is being

commanded by “RadarMotion2/SENSOR:Time”Topic and reporting status on “Dell-

PC/mcsMQTT/Unknown/Unknown/New4” Topic. The DeviceValue will be in the Payload as the default

if no substitutions are provided in the Payload template.

Substitutions in the publish template are indicated by use of expressions encased in “<<” and “>>”. For

example, if the desire is to publish a 8 bit brightness value and the HS brightness is maintained as a

percentage. Furthermore, a JSON payload rather than just a raw number are to be published. A

template of ‘{“Brightness”:<<$$VALUE:*255/100>>}’ would be used.

The second method to associate MQTT topic with existing HS device is with use of the Subscription

Wildcard template available on the Client Tab. The HS Device identification will be included in the

received Topic and specified as a set of substitution parameters described in Table 2 and in the

template. This approach has the minimum setup for the user, but the incoming topics must follow a

standard pattern that complies with the wildcard. Note that when the wildcard is used the Outbound

(Publish) Management is usually also setup so changes in the HS device are reported via MQTT. See

Figure 1 and Section 4.1.20 for an example.

Further auto-association can be done such that all existing non-plug-in HS devices are associated with a

publish topic and subscribe topic. This option is selected with the radio selection at the same location as

Page 109

the subscribe wildcard on the Client Tab. Note that when the immediate selection is made the

associations are made at time of selection, upon use of the Enumerate button on General Tab or when

the plug-in starts.

Figure 45 mcsMQTT Devices Mapping to Specific MQTT Topics

When MQTT messages of this type are received the CAPI interface is used to control the HS Device. This

is in contrast with mcsMQTT devices that are changed by SetDeviceValueByRef and SetDeviceString

methods. The Plug-in will search through the CAPI interface and try to find a match with the Payload

received and then forward that CAPI control item to HS to have the HS Device controlled. The owning

Plug-in is responsible for updating Device String and Value as appropriate. Normally this update will

result in a HS Event callback indicating that a device status has changed. If a publish topic is setup for

this subscribe topic then the status change will be published unless the publish topic and subscribe topic

are the same.

6.7 MQTT Receive Event Triggers
Three forms of MQTT event triggers are available. One detects a Topic update. This is the “MQTT Topic

Received” event trigger. This is shown as the two lower events in Figure 46. The trigger occurs on

receipt of the Topic. If can optionally be specified further by a specific text somewhere in the Payload.

See Figure 34 where the MQTT event trigger is being setup. This is similar to event triggers that are

from changes in a mapped HS Device where a change in Payload is needed to trigger an event. In this

case the Payload text will be anywhere in the Payload while in the Device change trigger it is setup per

HS trigger specification rules.

The Payload text box has three options: simple text, regular expression, change.

Simple text is a match of the text anywhere in the payload. The conditional operators && and || can be

used to specify multiple conditions such as “id&&45”.

Regular expression is indicated in one of three formats. REGEX(expression), <<REGEX(expression)>>, or

<<expression>>. Match is found when the regular expression indicates one or more matches

Keyword ‘change’ is entered for the Payload field of a MQTT Receive trigger then the trigger will fire

whenever the received Payload for the specified Topic changes. This could be used to trigger on

changing textual Payloads which are not possible with the basic HS Event trigger based upon device

changes.

The receive trigger can be used as an event condition (AND IF / OR IF) .

Page 110

Figure 46 MQTT Receive Event Triggers

The “MQTT Topic Timeout” trigger is used to determine that an expected periodic update has not been

received. The first event of Figure 46 shows this setup. The timeout duration is in minutes
and only one trigger will be produced after the timeout period. If the Topic is

subsequently received then the timer countdown is reset to enable triggering again.

6.8 Topic Wildcards
The “/”, “+” and “#” symbols have special meaning in MQTT Topics. The hierarchical structure of a

MQTT Topic is indicated with “/”. Generally, the order in the hierarchy is most general to most specific

much like the HS Locaation2/Location/Name hierarchy.

When specifying a receive trigger condition the “+” and “#” can be used as wildcards. The “+” indicates

that anything at the specified level of the hierarchy is acceptable. The “#” is used to indicate a match for

current and all subsequent levels of the hierarchy. Examples of these are used in Figure 46.

6.9 HomeAsistant Discovery
The home automation application Home Assistant has specified a protocol https://www.home-

assistant.io/docs/mqtt/discovery/ by which devices advertise their characterizes to facility including in

the Home Assistant application. Tasmota, among other devices, has support for this definition. In the

Tasmota case the discovery is advertised in the topic “homeseer/x/y/config” where x is the type being

advertised and y is the ID of the device. mcsMQTT will recognize this topic and automatically create HS

devices for the primary status and control aspects of the device. It will also make available other end

points in the Association tab for manual association with HS devices.

https://www.home-assistant.io/docs/mqtt/discovery/
https://www.home-assistant.io/docs/mqtt/discovery/

Page 111

6.1 Tasmota Discovery
Tasmota firmware has defined a discovery protocol specific to Tasmota devices to assist the client in

creating devices for the IO setup in Tasmota. There are two Tasmota/discovery messages when the

Tasmota SetOption19 0 is used (in Tasmota versions 12 and later). Prior versions of Tasmota also

supported the HomeAssistant Discovery.

The first is tasmota/discovery/+/config where basic IO devices are defined such as switches, relays and

lights. The second is Tasmota/discovery/+/sensors where sensor reporting is provided as part of the

topic. mcsMQTT will create HS Devices and Features for each sensor automatically if Automatic Device

Creation has been enabled on the MQTT Page, Client Tab. It will also create all simple relay and switch

configurations. When a Shutter has been announced it will create the normal shutter configuration.

When a Light has been announced it will create a dimmer control and a color picker control if Tasmota

also reports a Color capability.

Figure 47 illustrated the Last Will and Testament disclosure in HS Feature 1738. The simple relay in

1740, The color light in 1741 through 1743, the switch input in 1742, the shutter in 1745 through 1748.

Once a Feature has been created it can be removed from HS by using the MQTT Page, Association Tab

row by unchecking the “A”ssociate checkbox. Customizations of automatically created devices can be

done form the HS Devices Page.

Page 112

Figure 47 Tasmota Discovery Device Creation Examples

6.2 Homie Discovery
Provisions exist for discovery per Homie definition https://homieiot.github.io/. While this definition is

more generic and has potential for more wide-spread adoption there are no devices that have been

integrated with mcsMQTT using Homie.

6.3 Scripting Callback
If a user desires to handle the raw MQTT received payload in a script then a callback can be used to

receive MQTT topics with their payload. This is setup with a call to the plug-in to register the script. The

RegisterTopicReceivedScript callback expects an array of three parameters. The first is the filename that

will be located in the HS scripts folder. The second is the name of the procedure in this file. The third is

the Topic that will result in a callback. Multiple Topics can be requested with multiple calls to this

function. MQTT Topic wildcards can also be used.

https://homieiot.github.io/

Page 113

hs.PluginFunction("mcsMQTT", "",

"RegisterTopicReceivedScript",{"MyScriptFileName.vb", "MyFunctionName",

"MyMQTTTopic"})

As an example, the following two scripts are used in the file TestCallback.vb. The first (Main) was

invoked by event with script action. The second (TheCallback) was invoked by mcsMQTT when it

received the MQTT Topic “test/topic”.

sub Main(parm as object)

 hs.WriteLog("TestCallback", "Registering Callback for Script")

 Dim callbackParameters = New String {"TestCallback", "TheCallback", "test/topic"}

 hs.PluginFunction(

"mcsMQTT",

"",

"RegisterTopicReceivedScript",

callbackParameters

)

End Sub

sub TheCallback(parm as object)

 hs.Writelog("TestCallback", "Received Topic " & parm(0) & " with Payload " & parm(1))

End Sub

6.4 Scripting Receive
If a user desires to use capabilities built into mcsMQTT for other devices or data then they can simulate

the publication of a MQTT messages with the scripting function “ReceiveMqttMessage”. The

parameters consist of an array of two strings where the first is the Topic and the Second is the Payload.

A sample usage is below. In a real use the Topic and Payload parameters would be based on user data

rather that the static text in the example.

sub Main(parm as object)

 hs.WriteLog("TestReceive", "Simulating MQTT Message")

 Dim sTopic as string = “Test/Topic”

 Dim sPayload as string = “TestPayload”

 hs.PluginFunction(

"mcsMQTT",

"",

"ReceiveMqttMessage",

{sTopic,sPayload}

)

End Sub

Page 114

7 Display Filtering/Sorting and Scripting Automation

7.1 Display Filtering and Sorting
The top of Association Tab contains a set of checkboxes, filter pull-downs and column buttons that can

be used to affect the presentation of rows on the Association Table. Each press of the button will act as

a request to sort the table by this column. Subsequent press toggles ascending vs. descending.

The general approach to showing the Association table is to setup the filters as desired and then click

the “Show Selected Associations” button. This is different than most other interactions with mcsMQTT

where immediate feedback is provided on each mouse click. It is done this way because of the time it

takes to generate the Association table and no desire to wait while intermediate results are shown as

each filter is selected.

In general, the filtering constrains the number of rows that show in the Association table. The exception

is the “Displayed Checkbox Columns” filter affects the columns being shown on the table.

Overriding filters are done with checkbox. The “Show All Associated Only” has precedence over the

Include checkboxes. The subsequent filter pull-down tables are updated to show the subset that match

the checkbox selections when these checkboxes are clicked.

The top filter pull-down is oriented to HS Devices. The lower pull-down and the text textbox filter is

oriented to MQTT Topics and JSON keys within these Topics. A combination of all can be used. The

more filters selected the fewer number of rows will be rendered.

Provisions exist for six levels in each the Topic hierarchy and JSON Payload items. The pull-down for

each of these twelve will show the different names that have been seen at each level of the hierarchy. If

a particular name is selected then only those rows are shown on the display. Multiple levels of filters

can be used.

At any segment level multiple selections can be made. This will behave as an ‘OR’ condition so any of

multiple values of this segment will be included in the filter. Each segment operates and an ‘AND’

condition. Furthermore, a priority exists such that when earlier (left-most) segments have filters, then

the later segments will show only available values after the earlier filters have been applied. For

example, assume Topics x/y, x/z and a/y/b have been received. When selector T1 has elected to include

only x, then T2 will only have a selection for z. Th a/y/b Topic will not be available because the earlier

topic has excluded it. Consider the example in In this case the T1 filter has shown that there is only

interest in Topics “shellies”, “Abode”, and “AirTouch”. From those available Topics only “shellypmmini-

ag032abxyz” is of interest. The JSON payload of these topics will only consider sys/+/stable. This results

in a single Association Table element being shown.

The mechanics of the ‘OR’ condition is that the last selected filter is shown in the pulldown selector.

Earlier selections are shown above it. If any of these to be deselected then reselect it from the pulldown

selector. If all of them are to be deselected the select the blank option available in the selector. If all

segment levels are to be deselected then the option to use the Clear Filters button can also be used.

The Rebuild Filters button is used when new MQTT message have been received and they are desired to

be included in the filter selection process.

Page 115

Figure 48 Association Table Filter Usage

The “Filter By Text” queries the mcsMQTT database (mcsMQTT.db) looking at all the text-oriented fields

as well as the HS Device Ref. This includes things like MQTT Payloads, Topics, VSP entries, Expressions,

Templates and others. The textbox can contain simple text or it can contain a regular expression that

specifies a textual sequence. Simple text is entered as the sequence of characters that must exist in one

of the database fields. Regular expressions are applied to the same fields and are specified in either of

three ways. << regular expression >>, << REGEX(regular expression)>> or REGEX(regular expression).

This is the same syntax used for HS Event triggers that are looking for text in the payload of a MQTT

message.

Page 116

Figure 49 Topic Filter Setup

There may be times where you want the Plug-in to ignore new Topics. It may be a situation where a

new device is being debugged and immature messages are being published. The “Disable New Topic

Recognition” checkbox on General Tab (Figure 40) Inbound (Subscription) table is used for this purpose.

Going even further the “Disconnect from MQTT Broker” checkbox on the Client Tab is used to total

disconnect mcsMQTT from the MQTT environment. In this case no MQTT messages will be sent or

received with mcsMQTT.

Presentation sort order is selected by the association table header buttons as shown in Figure 45.

Ascending vs. descending status is shown in the first column. The column with upper case text is the

sort field.

Page 117

7.2 Scripting Automation
Scripting interface consists of sending MQTT messages, setting up callbacks for received MQTT

messages, editing of the MQTT topic properties, process management support, database support, and

other access to mcsMQTT features. The first two of these are described in Section 5.4 and Section 6.3.

The third is described here with the four functions EditPropertyByRef, EditPropertyByTopic, ClearVSP

and AddVSP.

7.2.1 Edit of mcsMQTT Properties
Public Function EditPropertyByRef(ByVal sRef As String, ByVal sProperty As String, ByVal

sValue As String) As String

Public Function EditPropertyByTopic(ByVal sSource As String, ByVal sProperty As String,

ByVal sValue As String) As String

Public Function ClearVSP(ByVal sRef As String) As String

Public Function AddVSP(ByVal sRef As String, ByVal sPayload As String, ByVal sValue As

String, ByVal sStatus As String) As String

The returned value from these functions is normally null. When an error occurs the error message is

returned. All parameters are handled as strings.

A property is updated by providing a handle to either the HS feature reference number or the MQTT

subscribed topic. Two methods are provided for convenience and produce the same result. The

propery being modified is from the following set. While the input parameter is a string its contents will

need to comply with the data type (Boolean, Integer, or String) used by mcsMQTT.

Select Case sProperty
 Case "Source"
 oMQTT.Source = sValue
 Case "Topic"
 oMQTT.Topic = sValue
 Case "Template"
 oMQTT.Template = sValue
 Case "Pattern"
 oMQTT.Regex(0) = sValue
 Case "Replace"
 oMQTT.Regex(1) = sValue
 Case "Match"
 oMQTT.Regex(2) = sValue
 Case "Reject"
 oMQTT.Reject = CType(sValue, Boolean)
 Case "Express"
 oMQTT.Express = CType(sValue, Boolean)
 Case "Elevate"
 oMQTT.Elevate = CType(sValue, Boolean)
 Case "ElevateKeys"
 oMQTT.ElevateKeys = sValue
 Case "URIEncode"
 oMQTT.URIEncode = CType(sValue, Integer)
 Case "Accept"
 oMQTT.Accept = CType(sValue, Boolean)
 Case "RetainFlag"
 oMQTT.Retain = CType(sValue, Boolean)
 Case "PluginDevice"

Page 118

 oMQTT.PluginDevice = CType(sValue, Integer)
 Enum RecordType
 NonPlugin = 0
 Child = 1
 Parent = 2
 End Enum

 Case "Subscribe"
 oMQTT.Subscribe = CType(sValue, Boolean)
 Case "Chart"
 oMQTT.Chart = CType(sValue, Boolean)
 Case "History="
 oMQTT.History = CType(sValue, Boolean)
 Case "StorePayload"
 oMQTT.StorePayload = CType(sValue, Integer)

 Enum RecordType
 InDeviceValue = 0
 InDeviceString = 1
 End Enum

 Case "Ref"
 oMQTT.Ref = CType(sValue, Integer)
 Case "ChangeType"
 oMQTT.ChangeType = CType(sValue, Integer)

 Enum EventChangeType
 IgnoreChange = 0
 ValueChange = 1
 StringChange = 2
 AnyChange = 3
 LogChange = 4
 ValueAndStringChange = 5
 ValueAndLogChange = 6
 StringAndLogChange = 7
 End Enum

 Case "Misc"
 oMQTT.Misc = CType(sValue, Integer)
 per HomeSeerAPI.Enums.dvMISC (HS3)
 per HomeSeer.PluginSdk.Devices.EMiscFlag (HS4)
 Case "QOS"
 oMQTT.QOS = CType(sValue, Byte)

Enum QOS
 AT_MOST_ONCE = 0
 AT_LEAST_ONCE = 1
 EXACTLY_ONCE = 2

End Enum
 Case "StatusType"
 oMQTT.StatusType = CType(sValue, Integer)

 Enum StatusTypes
 StatusOnly = 0
 Button = 1
 Number = 2
 Text = 3
 List = 4
 ColorPicker = 5
 ColorXY = 6
 NumberChange = 7
 Sign = 8
 CSV = 9
 HSB = 10

Page 119

 Slider = 11
 RGBW = 12
 Ramp = 13
 Toggle = 14
 jpgFile = 15
 End Enum

 Case "Broker"
 oMQTT.Broker = CType(sValue, Integer)

Broker index 0, 1, or 2

 Case "Reflist"
 oMQTT.RefList = sValue
 Case "Energy"
 oMQTT.Energy = CType(sValue, Integer)
 Case "VgpMax"

oMQTT.VgpMax = CType(sValue, Integer)

 Case “RateDevice”
 oTransform.RateDevice = CType(sValue, Integer)
 Case “RateSensitivity”
 oTransform.RateSensitivity = CType(sValue, Integer)
 Case “RateInterval”
 oTransform.RateInterval = CType(sValue, Integer)

 Enum RateIntervals
 PerSecond = 0
 PerMinute = 1
 PerHour = 2
 End Enum

 Case “AccumDevice”
 oTransform.AccumDevice = CType(sValue, Integer)
 Case “AccumReset”
 oTransform.AccumReset = CType(sValue, Integer)

 Enum AccumTypes
 NoReset = 0
 ResetTotal = 1
 ResetDelta = 2
 End Enum

 Case “AccumMidnight”
 oTransform.AccumMidnight = CType(sValue, Double)
 Case “Expression”
 oTransform.Expression = sValue
 Case “FilterSensitivity”

This scripting facility provides great power over the configuration of mcsMQTT topics it comes with

corresponding danger to really mess things up. Use with caution and have appropriate backups with

specific focus on the \Data\mcsMQTT\mcsMQTT.db file where the knowledgebase of the properties

exists.

The following test script illustrates the use of these scripting methods.

Sub Main(parm as object)

 'update publish Topic property using feature reference number

 Dim sRef as string = "5656"

 Dim sProperty as string = "Topic"

 Dim sResult as string = ""

 Dim sValue as string = "Sonoff/Bedroom/Light/cmnd"

 Dim sArrayRef() as string = {sRef,sProperty,sValue}

 sResult = hs.PluginFunction("mcsMQTT","","EditPropertyByRef",sArrayRef)

Page 120

 if sResult <> "" then

 hs.Writelog("mcsMQTT","MQTT SetProperty Message Failure " & sResult)

 end if

 'update MISC property using subscription topic

 Dim sTopic as string = "pool/state/temps/bodies/1/pool/setPoint:setPoint"

 sProperty = "Misc"

 sValue = "4096"

 Dim sArrayTopic() as string = {sTopic,sProperty,sValue}

 sResult = hs.PluginFunction("mcsMQTT","","EditPropertyByTopic",sArrayTopic)

 if sResult <> "" then

 hs.Writelog("mcsMQTT","MQTT SetProperty Message Failure " & sResult)

 end if

 'update Expression property using subscription topic

 sTopic = "Beacon/DD.0D.30.46.3D.2E"

 sProperty = "Expression"

 sValue = "{""Key"":""$$VALUE:+1""}"

 Dim sArrayExp() as string = {sTopic,sProperty,sValue}

 sResult = hs.PluginFunction("mcsMQTT","","EditPropertyByTopic",sArrayExp)

 if sResult <> "" then

 hs.Writelog("mcsMQTT","MQTT SetProperty Message Failure " & sResult)

 end if

 'define new VSP values and statuses

 Dim sArrayClear() as string = {sRef}

 sResult = hs.PluginFunction("mcsMQTT","","ClearVSP",sArrayClear)

 if sResult <> "" then

 hs.Writelog("mcsMQTT","MQTT ClearVSP Message Failure " & sResult)

 end if

 Dim sPayload as String = "CLOSE"

 Dim sNumber as String = "0"

 Dim sStatus as String = "CLOSED"

 Dim sArrayClose() as string = {sRef,sPayload,sNumber,sStatus}

 sResult = hs.PluginFunction("mcsMQTT","","AddVSP",sArrayClose)

 sPayload = "OPEN"

 sNumber = "1"

 sStatus = "OPENED"

 Dim sArrayOpen() as string = {sRef,sPayload,sNumber,sStatus}

 sResult = hs.PluginFunction("mcsMQTT","","AddVSP",sArrayOpen)

 'Error Examples

 sTopic = "Beacon/DD.0D.30.46.3D.2E"

 sProperty = "BadProperty"

 sValue = "dontcare"

 Dim sArrayTypo1() as string = {sTopic,sProperty,sValue}

 sResult = hs.PluginFunction("mcsMQTT","","EditPropertyByTopic",sArrayTypo1)

 if sResult <> "" then

 hs.Writelog("mcsMQTT","MQTT SetProperty Message Failure " & sResult)

 end if

 sTopic = "Beacon/BadTopic"

 sProperty = "dontcare"

 sValue = "dontcare"

 Dim sArrayTypo2() as string = {sTopic,sProperty,sValue}

 sResult = hs.PluginFunction("mcsMQTT","","EditPropertyByTopic",sArrayTypo2)

Page 121

 if sResult <> "" then

 hs.Writelog("mcsMQTT","MQTT SetProperty Message Failure " & sResult)

 end if

end Sub

Page 122

7.2.2 Process Management Scripting Helpers
Assistance for process management is provided with the two methods “Shutdown” and “ProcessId” as

parameters to the “PluginFunction” method. The following invocation will result in mcsMQTT going

through an orderly shutdown. This will normally be followed by HS automatically restarting mcsMQTT

since the process has disappeared from HS.

hs.PluginFunction("mcsMQTT", "", "Shutdown", {""})

The immediate script command from an event for HS4 prefixes with &n so

&nhs.PluginFunction("mcsMQTT", "", "Shutdown", {""})

To get the process Id for mcsMQTT the following call is made. This can be useful if a

need exists to monitor or shutdown the mcsMQTT process using shell commands. It will

return the integer value for process Id or 0 if mcsMQTT process has not yet been

identified.

processId = hs.PluginFunction("mcsMQTT", "", "ProcessId", {""})

The plugin mcsMonitor is included in the Updater package, but not normally installed. If

HSPI_mcsMonitor.exe is copied to the HS folder, and enabled, it will monitor the HS log

for one of the following two conditions by default. These can be changed and others

added from the Config page of mcsMonitor as shown in Figure 50. If either is met then it
will use the above two methods for an orderly shutdown of mcsMQTT which will then be

followed by it’s restart by HS. This work-around is provided for the case where the

bellow conditions have occurred and root cause has not yet been identified.

"Plugin mcsMQTT is not responding but it is still running, not restarting yet."

"Dropping event callbacks due to full queue"

Figure 50 mcsMonitor Config

Page 123

A preferred method for monitoring mcsMQTT is to setup an event where there is an expectation of

some periodic event such as the value of a MQTT device being updated. When this trigger occurs then

execute the action of restarting mcsMQTT plugin. This restart capability of mcsMQTT, and all HS plugins,

is available when the Association Table Topics starting with HS/ have been associated with HS Devices.

In lieu of running a plugin to perform monitoring it is also possible to run the same code in a script that

would normally be run as part of the HS startup script. Some modifications are required to put the code

in the scripting context, but central logic does not need to change.

Function InitHW() As String

 Dim sResult As String

 Try

 sResult = InitialInit()

 With PeriodicStatusTimer

 .Stop()

 .Interval = 10000

 .AutoReset = True

 .Start()

 End With

 callback.RegisterEventCB(HomeSeerAPI.Enums.HSEvent.LOG, PLUGIN_NAME, "")

 oHSEventCollection = New System.Collections.Queue

 oHSEVentThread = New System.Threading.Thread(AddressOf DoHsEvent)

 oHSEVentThread.Start()

 RegisterConfigPage(CONFIG_PAGE)

 logList = New Generic.Dictionary(Of String, String)

 Dim section As String = hs.GetINISection(GENERAL_GROUP, INI_FILE)

 If section <> "" Then

 Dim items() As String = Split(section, Chr(0))

 gBusy = True

 For k As Integer = 0 To items.Length - 1

 Dim arrKVP() As String = items(k).Split("=")

 If Not logList.ContainsKey(arrKVP(0)) Then

 logList.Add(arrKVP(0), arrKVP(1))

 End If

 Next

 gBusy = False

 End If

 If logList.Count = 0 Then

 logList.Add("R0", "Plugin mcsMQTT is not responding but it is still

running, not restarting yet.")

 logList.Add("R1", "Dropping event callbacks due to full queue")

 End If

 For Each sLog As String In logList.Values

 Console.WriteLine("Monitoring HS Log for " & sLog)

 Next

 Return ""

 Catch ex As Exception

 hs.WriteLog(PLUGIN_NAME, "InitHW " & ex.Message)

 Return "InitHW " & ex.Message

 End Try

 End Function

 Private Function InitialInit() As String

 Try

 If InStr(My.Application.Info.DirectoryPath, "\") = 0 Then

Page 124

 slash = "/"

 gLinux = True

 Else

 slash = "\"

 gLinux = False

 End If

 If hs Is Nothing Then

 MsgBox("Unable to access HS interface")

 Else

 hs.WriteLog(PLUGIN_NAME, "Version " &

My.Application.Info.Version.Major & "." & My.Application.Info.Version.Minor & "." &

My.Application.Info.Version.Revision & " Registered with Homeseer")

 End If

 Return ""

 Catch ex As Exception

 hs.WriteLog(PLUGIN_NAME, "InitialInit " & ex.Message)

 Return ex.Message

 End Try

 End Function

 Public Sub HSEvent(ByVal EventType As Enums.HSEvent, ByVal parms() As Object)

Implements HomeSeerAPI.IPlugInAPI.HSEvent

 Try

 SyncLock oHSEventCollection.SyncRoot

 oHSEventCollection.Enqueue(parms(3)) 'log message

 oEventQueueWaiting.Set()

 End SyncLock

 Catch ex As Exception

 hs.WriteLog(PLUGIN_NAME, "HSEvent " & ex.Message)

 End Try

 End Sub

 Public Sub DoHsEvent()

 Do While Not gShutdown

 Try

 Dim bRetry As Boolean = True

 Dim iQueueSize As Integer

 Do While bRetry AndAlso Not gShutdown

 Try

 SyncLock oHSEventCollection.SyncRoot

 iQueueSize = oHSEventCollection.Count

 End SyncLock

 Do While iQueueSize > 0 AndAlso Not gShutdown

 Try

 Dim sLog As String = oHSEventCollection.Dequeue()

 For Each sMatch As String In logList.Values

 If InStr(sLog, sMatch, vbTextCompare) > 0 Then

 RestartIt()

 oHSEventCollection.Clear()

 Exit For

 End If

 Next

 SyncLock oHSEventCollection.SyncRoot

 iQueueSize = oHSEventCollection.Count

 End SyncLock

 Catch ex As Exception

 oHSEventCollection.Clear()

 iQueueSize = 0

 End Try

Page 125

 Loop

 bRetry = False

 Catch ex As InvalidOperationException

 Catch ex As Exception

 hs.WriteLogEx(PLUGIN_NAME, "DoHSEvent Thread", ex.Message)

 End Try

 Loop

 If gShutdown Then

 Console.WriteLine("HSEvent Shutdown")

 End If

 Catch ex As Exception

 hs.WriteLogEx(PLUGIN_NAME, "DoHSEvent", ex.Message)

 End Try

 If Not gShutdown Then

 oEventQueueWaiting.WaitOne()

 End If

 Loop

 End Sub

 Private Sub RestartIt()

 If gProcessId <> 0 Then

 hs.WriteLog(PLUGIN_NAME, "Stopping mcsMQTT process " &

gProcessId.ToString())

 Try

 Dim oProcess As Process = Process.GetProcessById(gProcessId)

 If oProcess IsNot Nothing Then

 'pid = oProcess.Id

 Console.WriteLine("Monitor requesting mcsMQTT Shutdown")

 Try

 hs.PluginFunction("mcsMQTT", "", "Shutdown", {""}) 'let plugin

do orderly shutdown. Expect process to disappear at this point

 Catch ex As Exception

 Console.WriteLine("mcsMQTT PluginFunction call error " &

ex.Message)

 End Try

 Try

 oProcess = Process.GetProcessById(gProcessId)

 If oProcess IsNot Nothing Then 'oProcess.Id = pid Then

 Console.WriteLine("Killing mcsMQTT Process")

 Try

 oProcess.Kill()

 oProcess.WaitForExit(100000)

 Catch ex As Exception

 Console.WriteLine("mcsMQTT Process Kill Error " &

ex.Message)

 End Try

 'Exit For

 End If

 Catch ex As Exception

 'process has succefully stopped

 End Try

 'Next

 Console.WriteLine("mcsMQTT Process Abort Completed")

 End If

 Catch ex As Exception

Page 126

 Console.WriteLine("Process " & gProcessId.ToString & " is not running,

unable to stop.")

 End Try

 End If

 'setup for next monitoring

 gProcessId = 0

 PeriodicStatusTimer.Start()

 End Sub

 Private Sub PeriodicStatusTimer_Elapsed(ByVal Sender As System.Object, ByVal e As

System.Timers.ElapsedEventArgs) Handles PeriodicStatusTimer.Elapsed

 Try

 gProcessId = hs.PluginFunction("mcsMQTT", "", "ProcessId", {""})

 If gProcessId <> 0 Then

 PeriodicStatusTimer.Stop()

 hs.WriteLog(PLUGIN_NAME, "mcsMQTT is process " & gProcessId.ToString)

 Console.WriteLine("mcsMQTT is process " & gProcessId.ToString)

 End If

 Catch ex As Exception

 End Try

 End Sub

Page 127

7.2.3 Custom Database Scripting

7.2.3.1 Expand Database

mcsMQTT integrates the UI with database functions for message history and device history. A custom

SQLite database table can be created and data store in the database via scripting methods. The scripting

methods of interest to support this are bolded in the sample script below

CreateCustomDatabase, SaveToCustomDatabase and Replacement will normally be used
with the custom database.

CreateCustomDatabase accepts an array of column names (fields) that are to be created in the
MQTT_Custom table of the MQTTHistory.db database. mcsMQTT prepends the fields Sequence and
LastDate. This method can be call once or each time data is being written. It is not possible to alter the
set of columns after they have been created. Options are to manually edit the structure or to delete the
table and let a new one be created.

SaveToCustomDatabase accepts the same size array of values to store. mcsMQTT populates the

Sequence and LastDate fields automatically.

Replacement is a means to get access to data using replacement variables. These variables are defined

in Table 2.

The script below is design to be run on receipt a MQTT topic. The expected payload is CSV. A set of

fields are parsed from the CSV data and the values are stored to the database.

Sub Main(parm as object)

 Const ENTER_LOCATION as String = "MainGate"

 Const EXIT_LOCATION as String = "ExitGate"

 Const NANNY_CODE as String = "1234"

 Const URL_TOPIC as String = "192.168.1.248:8992.TCP"

 Const KEYPAD_GLOBAL as String = "KeypadExitTime"

 'parms contains the received message payload which is expected to be

CSV string such as

 ' 2022-03-25T09:10:39, Confirmation=202, GateExit, Function=99,

Code=1234

 Dim payloadOfInterest = "$$PAYLOAD:(" & URL_TOPIC & "):"

 Dim payload as string = hs.PluginFunction("mcsMQTT", "",

"Replacement",{" & payloadOfInterest & "})

 'parse and validate the data

 Dim arrCSV() as String = payload.Split(",")

 if arrCSV.Length < 2 then

 exit sub

 end if

 'setup the database fields and put the parsed data values in the

appropriate fields

 Dim arrFields() as string =

{"Confirmation","Location","Function","Code","Button","Minutes"}

 Dim arrValues() as string = {"","","","","",""}

 for iValue as integer = 1 to arrCSV.Length - 1

 Dim arrKeyValue() as string = arrCSV(iValue).Split("=")

Page 128

 'the location field does not have a key, but only a value such as

"MainGate"

 if arrKeyValue.Length > 1 then

 for iField as integer = 0 to arrFields.Length - 1

 if arrKeyValue(0).Trim = arrFields(iField) then

 arrValues(iField) = arrKeyValue(1).Trim

 exit for

 end if

 next

 Else

 arrValues(1) = arrCSV(iValue).Trim

 End if

 next

 'Use global variable to remember when Nanny entered

 Dim enterTime as object = hs.GetVar(KEYPAD_GLOBAL)

 if enterTime is Nothing then

 hs.CreateVar(KEYPAD_GLOBAL)

 enterTime = now

 end if

 if arrValues(1) = ENTER_LOCATION then

 arrValues(arrValues.Length-1) = 0

 enterTime = now

 hs.SaveVar(KEYPAD_GLOBAL,enterTime)

 end if

 'Minutes database field is computed. 0 for all records except Nanny

Exit

 arrValues(arrValues.Length-1) = 0

 if arrValues(1) = EXIT_LOCATION andalso arrValues(3) = NANNY_CODE then

 if isDate(enterTime) then

 arrValues(arrValues.Length-1) = DateDiff(DateInterval.Minute,

enterTime, Now)

 end if

 end if

 'put the data in the database

 hs.PluginFunction("mcsMQTT", "", "CreateCustomDatabase",arrFields)

 hs.PluginFunction("mcsMQTT", "", "SaveToCustomDatabase",arrValues)

End Sub

7.2.3.2 Retrieve Data

The scripting method ReadDatabase is available to request values for a specified duration from the

Long-Term database. The input parameter is an array with the first element being the Ref number as a

string. The optional second and third parameters provide the date range being retrieved. Data from the

last 30 seconds is retrieved if no range is specified.

InfluxDB contains an implicit date field while the other databases use LastDate as the field name. If data

was recorded with UTC date, then the returned data will also be UTC. InfluxDB data is returned in

ordered pairs of [date,value]. If multiple values are returned then the pairs will be comma-separated.

JSON format is used for others {“LastDate”:”yyyy-mm-dd hh-mm-ss”}, {“LastDate”:”yyyy-mm-dd hh-mm-

ss”} etc.

Page 129

 Dim arrQuery() as string = {iRef.ToString()} ',optional startDate,

startTime as 2nd and 3rd parameters - default last 30 seconds

 Dim sResult as String =

hs.PluginFunction("mcsMQTT","","ReadDatabase",arrQuery) 'read value recorded

in last 30 seconds

7.2.3.3 Write Data

The scripting method WriteDatabase is available to store values in the existing database. The parameter

array contains three string entries such as WriteDatabase({“123”,”first_kitchen_lamp,mytag”,”100”})

where “first_kitchen_lamp” is the Loc2_Loc1_Name to be stored in “device” database field, “mytag” is a

tag field, “100” is stored in the “value” field. “123” is the Ref of the device which is used to know what

format is expected in the “device” field.

 '(0) = iRef
 '(1) = FieldName,Tag ,Tag is optional
 '(2) = value

7.2.3.4 Execute SQL Command

The scripting method ExecuteDatabaseCommand is available to deliver SQL commands to the database.

The parameter array contains one item which is the SQL command. For example, the following will

remove all records for the device field that contans the name first_kitchen_lamp.

Function Main(parm as object) as String

 Dim arrQuery() as string = {"DELETE FROM mcsmqtt WHERE device=' first_kitchen_lamp’'"}

 Dim sResult as String = hs.PluginFunction("mcsMQTT","","ExecuteDatabaseCommand",arrQuery)

End Function

Page 130

7.2.4 PluginFunction Reference Methods
The full list of methods that are contained with mcsMQTT PluginFunction scripting call is listed below.

Most are previously described in the context of where they may be used.

 Return SendMqttMessage(parms)
 Return ReceiveMqttMessage(parms)
 Return RegisterTopicReceivedScript(parms)
 Return SendVoiceMonkey(parms)
 Return CreateCustomDatabase(parms)
 Return SaveToCustomDatabase(parms)
 Return Replacement(parms)
 Return ReadDatabase(parms)
 Return WriteDatabase(parms)
 Return ExecuteDatabaseCommand(parms)
 Return ProcessId(parms)
 Return Shutdown(parms)
 Return Name(parms)
 Return PagePreLoad(parms)
 Return EditPropertyByRef(parms)
 Return EditPropertyByTopic(parms)
 Return ClearVSP(parms)
 Return AddVSP(parms)

Page 131

8 History
The History feature of mcsMQTT provides a means to record all or a subset of HS DeviceValues and/or

MQTT Topics and Payload that pass through mcsMQTT.

Two types of database repositories are available. Long term or high-volume data can be stored in

InfluxDB, mySQL or MS SQL Server. Shorter term data for use in analysis is stored in SQLite.

The overall data collection parameters are available on the top of the History tab shown in Figure 51.

The Association page “H”istory, “L”ongTerm, and “S”hortTerm columns provide retention selection on

an item-by-item basis.

Figure 51 Hitory Data Collection Setup

Page 132

8.1 Long Term Storage in Network Database (InfluxDB, mySQL, SQL Server)
One of the four available long-term network-connected is selected for mcsMQTT to use. This selection

is based primarily on a user’s environment and which database they are most comfortable. mcsMQTT

will create that database (or buckets) it will use. It will also create the schema used in the database.

These database and schema parameters are specified at the top of the History tab.

The long-term data storage is enabled by providing an IP address of the database which is the first row

on the History Tab shown in Figure 51. If an IP (or network name) is not entered then long term storage

will not be enabled.

Different authentication methods are used based upon the database type selected. Influx 1.8, mySQL,

and SQL Sever can be used without entry of username and password if the user has setup their

providers to no require authentication. In the MS Server case authentication is required, but can be

setup as integrated with Windows login credentials. In this case username and password fields are left

blank in mcsMQTT. Influx DB2 requires a authentication token and requires an Organization Id. When

using InfluxDB 2.0 the token is generated by the InfluxDB UI tools. It will be a long string of characters.

When using InfluxDB 1.8 the token is entered as username:password and the username field in

mcsMQTT is left blank.

Data storage will include a timestamp, device identification, and DeviceValue. Device identification can

be one of several formats which are selected by a radio button. The field format radio should be

selected to make the record unique. The Floor, Room and Name options are under user control. The

Ref option uses a number assigned by HS so if a device is deleted and then recreated in the future it will

get a new Ref number and could be more difficult to identify in the database.

If a user desires to have additional data recorded then they specify the additional fields in the additional

identification fields text box. The additional identification fields can be used to help with query of the

data for Graphana or other uses. The data is entered as a set of key-value pairs which each pair

separated by comma. Replacement variables will often be used and expressions are also allowed. An

example of adding three fields (Category, Derived, and Location) to the measurement is shown below.

The value of each being determined by replacement variables.

Category=$$TAG:,Derived=<<(ROUND($$DVR:(123):+$$VALUE:)/2,1)>>,Location

=$$FLOOR:_$$ROOM:_$$NAME:

The recording of a record in the database will be performed each time an identified HS Device (Feature)

has been set by user, HS or any plugin action. The recording conditions are specified globally on the

History tab as shown in Figure 52 and individually on the Association tab with use of “L” checkbox

shown in Figure 53.

To reduce the amount of data being stored for cases where only small changes in values are occurring it

is possible to specify a dead band or hysteresis that must be exceeded between writes to the database.

Settings exist for global default on the History Tab and for individual devices on the Edit Tab. A negative

value entered on these fields indicate that no filtering should be done. This is the same as a zero value

in both the global and individual hysteresis settings.

Page 133

Figure 52 Database Storage Global Settings

The selection of the Devices (Features) to be used is done on the Association Tab using the checkbox in

the “L”ongTerm column. This checkbox will only be available on children Devices (Features) available in

HS. An example is shown in Figure 53.

Figure 53 Selection of HS Devices/Features for Recording in Long Term Database

Use of the data recorded in Long Term Database will typically be for use with external charting and

analysis tools, also can be viewed from within mcsMQTT on the History tab and Chart tab of the MQTT

Page. On-demand chart requests are also available. Grafana is a popular graphic package that is

compatible with InfluxDB and mySQL. mcsMQTT has no built-in support of charts using Grafana, but the

data recorded by mcsMQTT can be used with Grafana. mcsMQTT uses .NET tools for charting.

The internet is a good source for site installation of a network database. For those who want to use RPi

for InfluxDB this purpose the following is provided as a good source to walk one through it. It will install

a version 1.8 of InfluxDB on a standard 32 bit RPi image.

https://pimylifeup.com/raspberry-pi-influxdb/

It will contain a sequence of commands that will be entred to accomplish the installation. They are

copied here for ease of reference

sudo apt update

sudo apt upgrade

wget -qO- https://repos.influxdata.com/influxdb.key | sudo apt-key add -

echo "deb https://repos.influxdata.com/debian buster stable" | sudo tee

/etc/apt/sources.list.d/influxdb.list

sudo apt update

sudo apt install influxdb

sudo systemctl unmask influxdb

sudo systemctl enable influxdb

sudo systemctl start influxdb

https://pimylifeup.com/raspberry-pi-influxdb/

Page 134

influx

CREATE DATABASE pimylifeuptemperature

USE pimylifeuptemperature

INSERT temperature,location=living_room value=20

INSERT temperature,location=living_room value=10

INSERT temperature,location=bedroom value=34

INSERT temperature,location=bedroom value=23

SELECT * FROM temperature

SELECT value FROM temperature WHERE location='bedroom'

CREATE USER admin WITH PASSWORD 'xxx' WITH ALL PRIVILEGES

sudo nano /etc/influxdb/influxdb.conf

 auth-enabled = true

 pprof-enabled = true

 pprof-auth-enabled = true

 ping-auth-enabled = true

sudo systemctl restart influxdb

influx -username admin -password xxx

InfluxDB version 2 is emerging with downloads available for 64-bit images at

https://portal.influxdata.com/downloads/ . When version 2 is used there is a requirement that

authentication and organizations be identified. This is setup during the initial run after the install. This

setup will also include the creation of a bucket for the data. This in contrast with version 1.8 where

mcsMQTT is able to create the bucket if not already setup.

Some other differences are that the authentication is optional with 1.8 and if included the

Authentictioan Token is username:password. For version 2 a token needs to be generated within

InfluxDB (https://docs.influxdata.com/influxdb/cloud/security/tokens/create-token/) and then used in

the mcsMQTT setup. Version 2 also requires that an organization id be specified. Like the bucket this is

handled during the initial setup. The org id for version 2 needs to be transcripted into the mcsMQTT

setup. Note this is the org Id and not the org Name. The Id is needed when creating the database

bucket. When using InfluxDB versions before 2, the organization Id needs to be blank so mcsMQTT will

know which database version is being used.

MySQL and MS SQL Server have free community editions that are well documented and included tools

for viewing the schema and data.

8.2 Short Term Storage in SQLite
Data stored in SQLite database is intended for near term analysis. At the start of each day mcsMQTT

removes records from the database that are older than the retention period setup by the user. There

are no specific retention limits for the SQLite data, but large datasets will tend to have higher CPU

utilization and greater potential for corruption. The SQLite database is located at

data\mcsMQTT\mcsMQTTHistory.db.

https://portal.influxdata.com/downloads/

Page 135

Use of SQLite for history data is enabled from the History Tab by selecting a non-zero value for the

number of days of history that will be retained. If this field is blank then no short-term data will be

collected.

The selection of data for retention in the SQLite database is the same as for the LongTerm data with

global settings on the History tab and individual device settings on the Association Tab in the

“S”hortTerm column checkbox.

8.1 Viewing History Data

Access to the History data is from the History Tab and Chart Tab. It will present a checkbox and pull-

down selectors as shown in Figure 54 to select from the total History in the database. In this figure’s

example all data between April 1, 2018 and April 2, 2018 that start with Topic GarageDoor is being

selected.

Page 136

Figure 54 History Filter Selection and Device Display

History data can be viewed from either the ShortTerm or LongTerm database in a tabular format on the

History Tab and graphical format on the Chart Tab. This section describes the tabular format.

 ShortTerm is able to collect either MQTT messages and payloads or HS Device Values. LongTerm is able

to only collect data resulting from HS Device Value changes. Three “Show” buttons are provided to view

MQTT Topic history, HS Device History from SQLite and HS Device History from LongTerm database. It

Page 137

also provides filters to constrain the amount of data that presented so it will be easier to locate in the

table that is rendered. These are shown in Figure 54.

When the “Show Selected …” button is clicked the database is queried and the first 20 rows of the

selected history is shown in the table. An example is in Figure 55. At the top of the table are four

buttons that when clicked will sort the data in that column in ascending of descending order. The first

column P/S shows the Subscription Topics and Publish Topics.

Note that the full Topics are displayed vs. the individual JSON items had JSON decoding been selected.

Scrolling buttons are provided to advance through the history data if more than 20 rows are presented

based upon the filters selected. A text box entry is also presented to allow 20 records to be selected

starting at a particular position. In general, it will be more convenient to use the filters to show a limited

set of data rather than using the scrolling/windowing provisions.

Figure 55 MQTT Topic History Display

Page 138

9 Charts
The Chart tab of mcsMQTT provides a means to graphically observe the time history of a particular item

that had been collected in the History database. See Section 8 for setup associated with collection of

history data.

Time history can be collected for MQTT subscribe and publish message and it can be collected to HS

Device Value changes. The MQTT messages are identified by Topic. The HS Devices are identified by

Device Reference. One of the two can be selected for each of up to two vertical axes.

The History tab selects the global conditions for collection of data to be charted. The Association tab

identifies specific items to be available for charting. The Topic selectors on the Chart tab will provide

the list of potentially available items. The selectors can be all topics with numeric data or can be filtered

with the Topic-based selectors at the top of the page and the “Topic Selector” checkbox to include only

associated topics which is located just above the selectors. Text filters can also be used in a similar

manner.

The chart setup is specified by five selections shown in Figure 56. The Date range can be a single day or

span of days. The start time of the earliest date and end time of the latest date can be specified if

partial days are to be used to get finer resolution of the displayed data.

Lines can be selected for either left or right Y axis. Left axis lines are solid and right axis lines are dashed.

Labels and colors are used to identify lines on the chart. If minimum and/or maximum values for the Y

axis is specified then they will be used, otherwise auto scaling will be done that provides about 10% top

and bottom margins.

The selection of the items for the lines is from a pair of pull-downs. If there are a large number of items

saved in the History then it may be beneficial to use the checkbox that includes only associated items

(i.e. mapped to HS Devices) to reduce the length of the pull-down selectors.

Once the chart lines are constructed the set can be saved with a chart name and then can be later

restored with the load selector. The selector will also include “All”. When selected then all defined

charts will be shown in round robin sequence with ten second dwell times.

The Topics available are synchronized with the selections made for Associations and History. If, for

example, the non-Plug-in are not checked for inclusion in the History data, then the Chart Topic Selector

will have no non-Plug-in items.

Page 139

Figure 56 Chart Setup

Charting parameters can be setup and given a name. The name can then later be entered to restore the

parameters. These controls are at the top and bottom of Figure 56.

When the “Show Selected Chart” button is used the requested chart will be shown below the button

such as is shown in Figure 58. In this example three lines are drawn. If there is only one line on each Y

axis then the axis and line color (white on left and yellow on right) can be used to identify the item being

charted. If more than one exists on either Y axis then a legend will be shown in the upper right of the

chart as shown in Figure 57. The legend item will start with the axis code of 1 or 2 and then the Device

Page 140

Ref of the signal. The end of the legend will be the current value of the item. The Y axis lables will

contains both the name and the ref of the item.

Figure 57 Chart with Line Legend

When a topic has VSP relationships the VSP legend will be included below the chart such as in Figure 58.

The left axis is from Payloads that contain “OPEN”, “CLOSED” and “INDETERMINATE” text values. If

these have been setup in mcsMQTT as Value-Status-Pairs then the same Status-Value relationship will

be used, otherwise they will be assigned dynamically. The pairs legend is shown below the chart. The

white line (GarageDoor/Door) shows at 9:56 going from CLOSED (0) to INDETERMINATE (1) and then

shortly thereafter going to OPEN (2). About one minute later the door is shown to close while

transitioning through the indeterminate state.

On the right Y axis an RSSI value is shown through four values ranging from 74 to 80 during the selected

time period. The line and the axis labels are in yellow. Since the data is numeric there is no VSP legend

generated below the chart.

Page 141

Figure 58 Chart Display with VSP Legend

MQTT-sourced charts can also be produced by clicking on the Payload value of a row in the Association

tab. HS Device-sourced charts can be produced by clicking on the LastDate value of a row in the

Association tab if the hyperlink is available. It becomes available when the “S”hortTerm column

checkbox has been selected.

The chart will be shown in a new browser window in the upper left of the screen. In this case the chart

will contain only the left axis and the time span will include all data for the item in the history database.

This can be customized by making a chart definition and saved under the same name as the Topic for

MQTT-sourced or Ref number for Device-sourced. An example is Figure 234. In this case the

parameters will be used to define what is on the chart, the scaling and the time span.

A third method is provided to generate charts through automation rather than interactively. HTTP get

requests are made to the HS server of the form

For HS3: http://<IP>/MQTT?< parameters>

For HS4: http://<IP>/mcsMQTT/MQTT.html?< parameters>

Page 142

where <IP> is the computer name or IP address of the HS server. It may include the port if something

other than port 80 is used. <parameters> are from the items below

Identification

Chart=name – name is chart definition file name

Payload=name – name is chart definition file name

Y1=name –name is topic on left Y axis

Formatting

File=string – location to place created .png file. Either full path of just filename if being placed in

the \html\mcsMQTT subfolder of HS

Y1Min=number - optional left Y axis minimum

Y1Max=number - optional left Y axis maximum

Y2=name - optional, topic name on right Y axis

Y2Min=number - optional right Y axis minimum

Y2Max=number - optional right Y axis maximum

StartDate=date - optional start date

EndDate=date - optional end date

Duration=timespan - optional in format of dd hh:mm:ss (end date is set at current date/time)

Duration has priority over StartDate and EndDate

If no date is given then period is current day

If no Y min or max is given then auto scaling is done

Three identification options exist. Either the word “Chart” or “Payload” is required. If it is used with a

name value then that name will be used as the saved chart definition name and all formatting

parameters will default to the named definition values. If it is used without the name value then the Y1

value is required to identify what will be put on the chart.

“Chart” will return the filename of the chart with the file deposited in the HS server html\mcsMQTT

folder. “Payload” will return an HTML formatted page that uses an tag to load the graphic file.

Formatting parameters can be used to supersede the definition file or if a definition file is not specified

then they can be set to provide whatever chart customization is desired. If a parameter is not used then

defaults will be selected.

A few examples are shown below for the HS3 plugin.

http://192.168.0.14/MQTT?Chart&Y1=HyderonRain/STATE:Wifi:RSSI&StartDate=1-1-

2018&EndDate=5-1-2018&Y1Min=0&Y1Max=100

http://192.168.0.14/MQTT?Chart&Y1=HyderonRain/STATE:Wifi:RSSI&Y1Min=0&Y1Max=100&Durati

on= 10 20:30:40

http://192.168.0.14/MQTT?Chart=RSSI-Garage

http://192.168.0.14/MQTT?Payload=RSSI-Garage

Page 143

For the HS4 plugin the URL changes to use /mcsMQTT/MQTT.html rather than /MQTT and each

parameter is separated by “?” rather than “&” as shown below.

http://192.168.0.14/
mcsMQTT/MQTT.html?Chart?Y1=HyderonRain/STATE:Wifi:RSSI?StartDate=1-1-2018?EndDate=5-
1-2018?Y1Min=0?Y1Max=100

http://192.168.0.14/
mcsMQTT/MQTT.html?Chart?Y1=HyderonRain/STATE:Wifi:RSSI?Y1Min=0?Y1Max=100?Duration=10
20:30:40

http://192.168.0.14/ mcsMQTT/MQTT.html?Chart=RSSI-Garage

http://192.168.0.14/ mcsMQTT/MQTT.html?Payload=RSSI-Garage

9.1 Charts with HS Touch

HSTouch provides a control that can be used as the container for an image file such as one generated by

mcsMQTT. There may be multiple ways to setup HS Touch. The following discussion illustrates a

specific way as shown below. In this case the image control is placed on the canvas. The

ImageURLNormal propery is set to the HS URL of a png file that will be created by mcsMQTT. The

IsVideo property is set to true to facilitate HSTouch monitoring for a change in the file.

Page 144

Figure 59 HS Touch Setup to Show Chart

An event is setup in HS for periodic execution at the update rate desired for the chart. In this example it

is set to 15 seconds. The event action is an immediate script that uses the hs.GetURL method that

requests mcsMQTT to rebuild the chart from the chart setup called “wled” and to place the png in file

bucketHeater.png. When the event is run the file will be rewritten every 15 seconds and HSTouch will

recognize the update and refresh the image control on the screen. Note the syntax for File parameter in

hs.GetURL uses “?” to separate it from the Chart parameter. For HS3 it would be “&”.

Figure 60 Event to Refresh Chart Every 15 Seconds

Page 145

When mcsMQTT generates the png file it will actually create two files. One will be “plotXX.png” and the

second will be the name given in the File parameters if this parameter exists. The XX will increment for

each new chart generated. The plotXX.png is appropriate for clients that are looking for a new file

typically embedded in HTML img tags such is produced when using the Payload rather than the Chart

parameter for the chart being generated.

Page 146

10 mcsMQTT Self Signed Certificate Support
This section, as well as the SSL implementation within mcsMQTT has been provided by vasrc

from Homeseer Message Board.

There are two parts. The first part is a general overview of the SSL process as it relates to

IOT/MQTT. The second part is an instruction manual on how to create, install and configure SSL

communications using the mcsMQTT plug-in on HS.

10.1 Part I. SSL/TLS Communications

10.1.1 Why encrypt your IOT/MQTT Network

Since the MQTT protocol isn’t currently encrypted natively, all that’s needed is the Broker

username and password to access your IOT network and create havoc. If you don’t use SSL/TLS

encryption, all of the usernames and password may be sent “in the clear” (you can MD5 hash

passwords on some devices).

So overall, it’s just a good thing to do since MQTT is such a basic protocol (invented back in

1999 by IBM, before there were a lot of issues with security) and has no real internal security

provisions.

10.1.2 SSL Communications Overview

In this document, we use SSL to represent both TLS and SSL. SSL certificates are also commonly

called public key, digital or identity certificates.

To understand why we use SSL certificates, it’s helpful to understand how they work. This is a
high-level description of the process as it relates to IOT.

Some of the key elements when communicating with SSL are:

• An SSL certificate is an electronic document used to prove the ownership of a public key.
The certificate includes information about the key, information about the identity of its
owner (called the subject), and the digital signature of an entity that has verified the
certificate's contents (called the issuer). If the signature is valid, and the software examining
the certificate trusts the issuer, then it can use that key to communicate securely with the
certificate's subject. In IOT networks a certificate's subject is typically a computer or other
device. In a typical IOT public-key infrastructure (PKI) scheme, the certificate issuer’s
certificate authority (CA) is usually self-signed vs signed by a company that charges
customers (root certificate).

• Certification authority (CA) is a third party that is trusted by both the SSL client (Device) and

the SSL server (Broker). Its role is to provide the SSL client (Device) and the SSL server

(Broker) a means to authenticate that each of their certificate(s) were issued by a trusted

source. CA certificates can be both Root authorized or Self-Signed.

https://en.wikipedia.org/wiki/Public_key
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Public-key_infrastructure
https://en.wikipedia.org/wiki/Certificate_authority

Page 147

• When establishing SSL-based encrypted communication channels, the authentication of the

devices communicating is optional. This means the ownership of the certificates may or may

not be checked to confirm who the users (devices) are, but rather they are used to provide

encryption services to the data being sent and received.

• Due to the diverse number of MQTT capable devices available, the type of SSL

communication will vary. Some of the options are:

o Unidirectional Authentication: only the client (Device) will verify the SSL server's

(Broker) certificate. For end devices this is typically the most common SSL method used

currently.

o Bidirectional Authentication: both the SSL client (Device) and the SSL server (Broker) will

mutually verify each other’s certificates. This is typically done on more “intelligent”

clients such as a Windows or PI based system that have more resources or an MQTT

utility such as MQTT_Spy.

10.1.3 Root Signed and Self-Signed certificates

• A root certificate is a public key certificate that identifies a root certificate authority (CA).

While root certificates are technically self-signed they are not the same as the certificates

we call usually call self-signed. A root certificates primary difference is that their signers

have been universally accepted as being valid. Lists of these valid signers are typically

included in Browsers and applications so they can be used to confirm that SSL certificate

(usually purchased) that’s being used is valid. https://en.wikipedia.org/wiki/Root_certificate

• A self-signed certificate is very similar to a root certificate with the primary difference being

it is only considered valid by the user/vendor that created it and is not universally accepted

like root certificates are. Therefore, they have to be verified internally. A self-signed

certificate is very common when running an internal DIY IOT network as an external Root

signed certificate isn’t always easy to validate on smaller IOT devices due to the lack of a

Trusted Root store on the device.

• Both types of certificates are used to sign the SSL certificates that are used to provide the

authentication and encryption functions. The primary difference of these SSL certificates is

whether they are signed internally (self-signed) or externally (Root).

We use SSL communications for two primary reasons:

1. Data Encryption. To provide communication security and prevent session hijacking over

a network by encrypting the data being between the device and Broker.

2. Device Authentication. To ensure both the Devices and Brokers in our network are who

they say they are. This step is called authentication and is not always done in a DIY IOT

network.

https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/Self-signed_certificate

Page 148

For data encryption it’s necessary to confirm that the SSL certificates and their associated keys

match. This level of authentication is to ensure that the data encryption is secure. This is

hardcoded into the SSL libraries and is always done. If this level of authentication fails, the

network connection will fail.

Device authentication is used to ensure that the SSL certificates represent their owner’s identity
correctly. This is done using HTTPS all the time so you know that the website you think you’re
looking at is really that website. This level of authorization requires a CA that has been signed
by a Root Authority and is confirmed by checking for a Root certificate that is stored on your
computer (usually by the Browser vendor). In a DIY IOT network, this isn’t always feasible as the
Devices can be limited in memory or pre-programmed to operate in a specific manner already.
Therefore, having an SSL certificate that has been signed by a Root Authority won’t always be
helpful as you’ll need to install the Intermediate Certificates
(Certificates that point at the Root Certificates) the same as you would have to install your own
Self-Signed certificate. Therefore, many of the IOT devices run with this level of authentication
disabled and inherently trust the CA certificate it is assigned (the same as it would an
Intermediate/Root certificate).

To provide the minimal (unidirectional) encrypted SSL communications on MQTT devices, two

SSL certificates must be installed on the MQTT broker as well as one on each device. Typically,

in an internal IOT network, this would be a self-signed CA certificate on both the Broker/server

and client/device along with a Broker/server certificate on the Broker, signed by the self-signed

certificate. The CA certificate can be reused on all IOT devices. The Broker/server certificate can

only be used on the Broker. These certificates provide adequate protection from sniffing of the

TCP packets being sent between the devices and the Broker (many times using WiFi). Although

most Brokers and some devices do support client certificates (not currently supported on this

Plug-in) client certificates are not as commonly used, primarily as on most Brokers they force

the user to only use devices that support client authentication. Client authentication currently

is used more for commercial systems than home systems.

Here is a simple overview of how a secure SSL session is accomplished

Page 149

(The Client certificate process is not shown in this diagram)

SSL establishes a secure connection between the device and the Broker and the process of
encrypting information and authentication. The technical steps are:

Client Hello:

A Device initially tries to establish connection to the Broker using Client Hello and ask it for identification

details like SSL version number, cipher setting.

Server Hello:
After Client Hello, the Broker responds to the Device with its public key along with a copy of its
SSL certificate including SSL version, cipher settings, session specific information called Server
Hello.

Authentication:
A Device authenticates the details of the Broker certificate (more on Authentication later),
generates a pre-master secret, encrypts it with the Brokers certificate public key and send it
back to the Broker.

Decryption:
The Broker then decrypts the pre-master secret with its private key. Both the Device and the
Broker generate Master secret with agreed ciphers.

Generate Session Keys:
After generating master secret, both the Device and the Broker generate session keys for
encryption and decryption used in information exchange.

Page 150

Data Transfer:
Both the Device and the Broker will now exchange encrypted information.

10.1.4 SSL Options that NEED CLOSURE

Not all devices are SSL capable. It’s usually possible to create a second listening port on the
Broker for non-secure devices. If you’re concerned with network security (i.e. your IOT network
isn’t isolated on a VLAN or separate Subnet), you should read up on Access Control lists for the
Broker. Typically, port 1883 is used for non-secure devices and port 8883 is for SSL type devices.
Any port can be selected for either though.

To implement this, both the Broker as well as the Device need to support SSL type

communications. Most newer devices should have this capability. In this example, I’ll also

provide an example of how to configure one of the more popular MQTT brokers, Mosquitto.

Page 151

10.2 Installing SSL support on the mcsMQTT Plug-in

mcsMQTT provides an automated mechanism to create self-signed certificates, a certificate and key for

the Broker and a certificate and key for the mcsMQTT client. This automated functionality is used when

a Broker security of None is not selected and certificate files are not setup on the MQTT Page, Broker

Tab. In this case a set of certificates and keys are generated in the \data\mcsMQTT subfolder with

naming convention derived from the Broker IP that has been setup on the same Page for the Broker

certificate, the same for the CA certificate with a “ca” prefix, and the computer name where mcsMQTT

is running for the client. The CA certificate, Broker certificate and the Broker key files still need to be

manually copied to the computer where the MQTT Broker is running.

If a user desires to use the same capability manually from a command window, then navigate to the

\Bin\mcsMQTT folder and enter command

CAandClientCert.exe "FilePath, BrokerName/IP,ClientName/IP"

Where BrokerName/IP is replaced by either the computer name (or fully qualified domain name that

can be resolved via DNS) of the MQTT Broker, and ClientName/IP is the same for computer where the

client is running. If ClientName/IP is blank then no client certificate or key wil be produced. The

FilePath is some location on the computer to where the generated certificates will be placed. For

example,

CAandClientCert.exe "C:\Temp, 192.168.0.16, "

CAandClientCert.exe " c:\Program Files (x86)\HomeSeer HS4\Data\mcsMQTT,

MQTTBroker,HSRPi "

The example above is for a Windows use. CAandClientCert.exe is a .NET 5.0 application so should be

able to be used on Linux with a prefix of “mono “. This evaluation on Linux has not beed performed.

What is significant in the names provided is that the same name needs to be used when trying to

connect. For example, if HSRPi resolves to 192.168.1.100 and HSRPi is used in the certificate geneate

name, then connectiong via MQTT needs to be to HSRPi and not 192.168.1.100.

Rather than using the automated process or CAandClientCert.exe tool, other 3rd party tools can be used

to generate the certifiates and keys. The description of using OpenSSL (Windows or Linux) is provided in

the following paragraphs.

10.2.1 SSL/TLS Certificate creation:

The first step in setting up SSL communications between the mcsMQTT plug-in and your Broker

is to create the necessary SSL certificates. You’ll typically need two. A Self signed CA certificate

that you can use to sign your Broker “server” certificate, and the Broker certificate itself. If you

decide to you also want Client certification, you’ll need to create another certificate for each

Device/Client as well.

Page 152

10.2.2 Software/Tools:
CAandClientCert.exe utility is described above. A more interactive mechanism using openssl is shown

below. Openssl can be install on either Windows or Linux.

This example uses openssl to create the certificates. If you’re on a Windows platform you’ll

need to install the Openssl application on your platform:

https://slproweb.com/products/Win32OpenSSL.html

If you are on some variant of Linux, it will either be installed already or you can use the

associated install app for the flavor of Linux you’re using (apt-get, yum, etc).

There are other automated methods to create certificates as well:

https://github.com/owntracks/tools/blob/master/TLS/generate-CA.sh

10.2.3 Certificate Creation

10.2.3.1 Certificate Naming

In the following instructions, you can use any file naming convention you want for the

names of the SSL certificates, but it’s best to name them something that explains

where/what they are used for (i.e. MQTT_Broker.xxx, MQTT_CA.xxx, MQTT_garage.xxx,

etc).

10.2.3.2 Select the directories used to save the certificates

Since SSL certificates can be created on many different devices, they may not always

end up on the device you’re using them on. For this reason, it’s a best practice to create

all your SSL Certificates on one computer both for security as well as for backup rather

than directly on the device (which isn’t always possible for smaller devices). You’ll need

to use some of these Certificates again (particularly the CA certificate) for new devices

and/or reconfigurations so it’s convenient to have them all in one location. This

directory can be located anywhere that’s convenient to you (and hopefully backed up

regularly). Linux typically stores their certificates at /etc/ssl/private for the key and

/etc/ssl/certs for the certificates. On Windows OpenSSL is typically C:\OpenSSL-

Win32\bin\PEM\

Since the SSL Certificates may be on another machine, they will typically need to be

copied to their proper storage location on the device that is using them. This location is

usually device dependent and is almost always located on the device that’s using the

certificates (eg Broker, Device). If the vendor/application doesn’t define a location,

you’ll need to determine where you want to store them. For the Mosquitto Broker, on

Linux there’s usually a directory for the mosquito broker already created for you at

/etc/mosquito. On windows it’s typically located at, C:\Program Files (x86)\mosquitto.

https://slproweb.com/products/Win32OpenSSL.html
https://github.com/owntracks/tools/blob/master/TLS/generate-CA.sh

Page 153

In this example, while I’ll use standard directories, it’s perfectly fine to use any file

structure if you understand the openssl process. I’ll also assume that the user is creating

their SSL certificates on one machine and has created/confirmed appropriate storage

directories are on that machine. For example, on Linux keyDir/ would be /etc/ssl/private

and certDir/ would be /etc/ssl/certs. On Windows, since openSSL usually stores both the

key and certificate in the same directory both keyDir/ and certDir/ would be the same:

C:\openSSL-Win32\PEM.

10.2.3.3 Create the Key for the CA (Certificate Authority) certificate:
From Windows elevated powershell the following can be done. Otherwise use the openssl process that

follows. In the Powershell example the certificate name is SSL. Change is to the appropriate naming

convention here and in subsequent certificate creation steps if Windows Powershell is being used.

PS C:\WINDOWS\system32> $certname = "SSL"

PS C:\WINDOWS\system32> $cert = New-SelfSignedCertificate -Subject "CN=$certname" -

CertStoreLocation "Cert:\CurrentUser\My" -KeyExportPolicy Exportable -KeySpec Signature -KeyLength

2048 -KeyAlgorithm RSA -HashAlgorithm SHA256

PS C:\WINDOWS\system32> Export-Certificate -Cert $cert -FilePath "C:\Cert\SSL.crt"

openssl genrsa -des3 -out keyDir/MQTT_CA.key 2048

This creates your IOT networks CA certificate Key which is used to create the final

certificate. The “-des3” requires you to provide a PassPhrase to protect the key and is

optional. Remove it from the command line if you don’t want to have to remember it

(You’ll need to use it when you create the new Broker or Client certificates).

Page 154

10.2.3.4 Create the CSR file from the previous CA Key for creating the final CA certificate:

openssl req -new -key keyDir/MQTT_CA.key -sha256 -out certDir/MQTT_CA.csr

-sha512 is acceptable if the latest SSL libraries are installed.

This command requires you to input several variables. Most are informational and/or

not used for a self-signed cert. The Common Name is the only one you need to consider.

Country Name (2 letter Code) [xx]: i.e. US

State or Province Name (full name) [Berkshire]: i.e. Washington

Locality Name (e.g., city) [Newbury]: i.e. Seattle

Organization Name (e.g., company) [My Company Ltd]: i.e. MQTT Ltd

Organizational Unit Name (e.g., section) []: i.e. IT (Optional)

*Common Name (e.g., your name or your server's hostname) []: i.e. IOTnetwork

This should be something like local host, your name or network name. It should not be

the same as what you use on the broker certificate later.

Email Address []: i.e. not required. You can leave blank

Please enter the following 'extra' attributes to be sent with your certificate request

A challenge password []: leave blank

An optional company name []: leave blank

10.2.3.5 Create the final CA certificate:

openssl x509 -req -days 3650 -in certDir/MQTT_CA.csr -signkey keyDir/MQTT_CA.key -

out certDir/MQTT_CA.crt

If you entered a passphrase for your CA key, you’ll need to enter it when requested.

This certificate will be good for 10 yrs (3650). You can select a smaller period if you like.

10.2.3.6 Create Broker certificate Key (NO passphrase)

openssl genrsa -out keyDir/MQTT_Broker.key 2048

10.2.3.7 X509 Create Broker certificate request:

openssl req -new -out certDir/MQTT_Broker.csr -key keyDir/MQTT_Broker.key

Again, you’ll be asked the following questions. None of the entries are all that important

EXCEPT the Common Name (CN)

Country Name (2 letter Code) [xx]: i.e. US

State or Province Name (full name) [Berkshire]: i.e. Washington

Locality Name (e.g., city) [Newbury]: i.e. Seattle

Organization Name (e.g., company) [My Company Ltd]: i.e. MQTT Ltd

Page 155

Organizational Unit Name (e.g., section) []: i.e. IT

* Common Name (e.g., your name or your server's hostname) []: i.e. IOTmachine

This needs to be the Name of the PC running your Broker. It’s the name that’s attached

to the IP address of the machine, i.e. MyPC, MQTTBroker.local or just the IP address.

Email Address []: i.e. not required. You can leave blank

Please enter the following 'extra' attributes to be sent with your certificate request

A challenge password []: leave blank

An optional company name []: leave blank

10.2.3.8 Create Broker certificate

openssl x509 -req -days 3650 -in certDir/MQTT_Broker.csr -CA certDir/MQTT_CA.crt -

CAkey keyDir/MQTT_CA.key -CAcreateserial -out certDir/MQTT_Broker.crt

If you entered a passphrase for your CA key, you’ll need to enter it when requested.

10.2.3.9 Create Client certificate Key (If needed. No passphrase unless client device requires it (MQTTspy, mcsMQTT

plug-in)

openssl genrsa -out keyDir/MQTT_nameOfClient.key 2048

10.2.3.10 X509 Create Client certificate request:

openssl req -new -out certDir/MQTT_nameOfClient.csr -key

keyDir/MQTT_nameOfClient.key

Again, you’ll be asked the following questions. None of the entries are all that important

EXCEPT the Common Name (CN)

Country Name (2 letter Code) [xx]: i.e. US

State or Province Name (full name) [Berkshire]: i.e. Washington

Locality Name (e.g., city) [Newbury]: i.e. Seattle

Organization Name (e.g., company) [My Company Ltd]: i.e. MQTT Ltd

Organizational Unit Name (e.g., section) []: i.e. IT

* Common Name (e.g., your name or your server's hostname) []: i.e. IOTmachine or IP

address

This needs to be the Name of the device or PC the client app is running on. It’s the name

that’s attached to the IP address of the machine/device, i.e. MyPC, garageControl, or

just the IP address.

Email Address []: i.e. not required. You can leave blank

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []: leave blank

An optional company name []: leave blank

Page 156

10.2.3.11 Create Client certificate:

openssl x509 -req -days 3650 -in certDir/MQTT_ nameOfClient.csr -CA

certDir/MQTT_CA.crt -CAkey keyDir/MQTT_CA.key -CAcreateserial -out certDir/MQTT_

nameOfClient.crt

If you entered a passphrase for your CA key, you’ll need to enter it when requested.

10.2.3.12 Copy the SSL certificates to the correct location (if necessary)

If the SSL certificates were created on a different machine than the Broker, you’ll need

to copy them from that machine to the Broker machine.

Copy the CA (MQTT_CA.crt), Broker Key (MQTT_Broker.key) and SSL certificates

(MQTT_Broker.crt) to the Broker:

For Mosquitto on Linux it’s typically: /etc/mosquito/ssl/private for the Broker Key and

/etc/mosquito/ssl/certs for the CA and Broker certificates.

For Mosquitto on Windows typically they all go to the same directory: C:\Program Files

(x86)\mosquitto\PEM\

10.2.3.13 Create Client composite Certificate

openssl pkcs12 -export -out certDir/MQTT_nameOfClient.pfx -inkey

keyDir/MQTT_nameOfClient.key -in certDir/MQTT_nameOfClient.crt -certfile

certDir/MQTT_CA.crt

10.2.3.14 Copy certificates to Client Devices

For devices/clients you’ll need to copy the CA (MQTT_CA.crt) to the individual devices

appropriate location. If you run with Client Authorization and depending on the type of

device, you’ll either need to copy the Client (MQTT_name OfClient.crt) and Key

(MQTT_nameOfClient.key) or paragraph 10.2.3.13 MQTT_nameOfClient.pfx to the

devices appropriate location as well. The mcsMQTT plug-in requires the PFX file from

paragraph 10.2.3.13.

10.2.3.15 Summary for ease of copy/past

openssl genrsa -out C:\Cert\MQTT_CA.key 2048

openssl req -new -key C:\Cert\MQTT_CA.key -sha256 -out C:\Cert\MQTT_CA.csr

openssl x509 -req -days 3650 -in C:\Cert\MQTT_CA.csr -signkey C:\Cert\MQTT_CA.key -

out C:\Cert\MQTT_CA.crt

openssl genrsa -out C:\Cert\MQTT_Broker.key 2048

openssl req -new -out C:\Cert\MQTT_Broker.csr -key C:\Cert\MQTT_Broker.key

Page 157

openssl x509 -req -days 3650 -in C:\Cert\MQTT_Broker.csr -CA C:\Cert\MQTT_CA.crt -

CAkey C:\Cert\MQTT_CA.key -CAcreateserial -out C:\Cert\MQTT_Broker.crt

openssl genrsa -out C:\Cert\MQTT_Client.key 2048

openssl req -new -out C:\Cert\MQTT_Client.csr -key C:\Cert\MQTT_Client.key

openssl x509 -req -days 3650 -in C:\Cert\MQTT_Client.csr -CA C:\Cert\MQTT_CA.crt -

CAkey C:\Cert\MQTT_CA.key -CAcreateserial -out C:\Cert\MQTT_Client.crt

openssl pkcs12 -export -out C:\Cert\MQTT_Client.pfx -inkey C:\Cert\MQTT_Client.key -

in C:\Cert\MQTT_Client.crt -certfile C:\Cert\MQTT_CA.crt

Page 158

10.3 Mosquitto Broker configuration for SSL

This is for a Linux based broker. The configuration file is the same for Windows based broker

To add SSL/TLS support to your Mosquitto broker, open the mosquitto.conf file with a text

editor. If you are already running non-secure using port 1883 (or similar), they you’ll need to

decide if you want to add another listening port (so you can listen on both secure and non-

secure ports) or just listen only on the new secure port. I’d recommend you try adding a second

port initially and then remove the non-secure one later if appropriate. Assuming you have your

primary (1883) already running,

1. Search in the moquitto.conf file for “Extra Listeners”. It may not be present depending

upon the install version of Mosquitto. It is possible to have both insecure

communications on port 1883 and secure communications on port 8883. The “listener”

line can be added multiple times to address specific needs.

2. Remove “#” from “#listener” to enable this listener or just add a section starting with

“listener”

3. Scroll down (Be sure you’re below the Extra Listener section (or added listener) as all of

these entries exist for the normal listener at the top of the Configuration file as well)

until you find the line with #cafile. You’ll need to add the location of the MQTT_CA.crt

file. Be sure to remove the Comment (#) marker.

For Linux it would be something like:

cafile /etc/mosquitto/ssl/MQTT_CA.crt (this is completely dependent on

For Windows:

cafile C:\OpenSSL-W32\bin\PEM\MQTT_CA.crt

4. Scroll down to #certfile and add the location of the MQTT_Broker.crt file such as:

certfile /etc/mosquitto/ssl/certs/MQTT_Broker.crt

certfile C:\OpenSSL-W32\bin\PEM\MQTT_Broker.crt

There is no specific path locations. Just be consistent to not confuse yourself.

5. Scroll down to #keyfile and add the location of the MQTT_Broker.key file

keyfile /etc/mosquitto/ssl/private/MQTT_Broker.key

keyfile C:\OpenSSL-W32\bin\PEM\MQTT_Broker.key

6. Restart the mosquitto broker to accept the changes. You should now be able to access

the broker using SSL/TLS communications.

Version 1 and 2 of Mosquitto have different defaults so the transition from 1 to 2 is a breaking

change for most. Another observation is that with version 2, I have only had success with

encrypted communications when both a username/password for Mosquitto and the certificates

Page 159

are setup. In version 1, I did not have a need to provide username and password. The

mosquito.conf file that has worked for me for insecure communications on 1883 and secure

communications on 8883 is shown below. The mosquitto_passwd utility that comes with

the client tools when using Steve’s guide at How to Install The Mosquitto MQTT Broker- Windows

and Linux (steves-internet-guide.com) is one reference to setup username/password security with

Mosquitto.

The example below uses the auto-generated files for a MQTT Broker IP at 192.168.0.16 that

has been specified as 192.168.0.16 in the mcsMQTT or utility tool and had been copied from

the HS computer to the Linux MQTT Broker on 192.168.0.16. Note that .NET Framework, which

HS uses, does not support TLS1.3 while Mosquitto does.

Place your local configuration in /etc/mosquitto/conf.d/

A full description of the configuration file is at
/usr/share/doc/mosquitto/examples/mosquitto.conf.example
per_listener_settings true
pid_file /run/mosquitto/mosquitto.pid

persistence true
persistence_location /var/lib/mosquitto/

log_dest file /var/log/mosquitto/mosquitto.log

listener 1883
allow_anonymous true

listener 8883
require_certificate false
password_file /etc/mosquitto/passwd
certfile /etc/mosquitto/certs/192-168-0-16.crt
keyfile /etc/mosquitto/certs/192-168-0-16.key
cafile /etc/mosquitto/ca_certificates/ca192-168-0-16.crt

tls_version tlsv1.2

include_dir /etc/mosquitto/conf.d

Here are also some links to “prettier” versions of some of the instructions by others:

Mosquitto Broker Configurations:

http://www.steves-internet-guide.com/mossquitto-conf-file/

http://www.steves-internet-guide.com/install-mosquitto-broker/
http://www.steves-internet-guide.com/install-mosquitto-broker/
http://www.steves-internet-guide.com/mossquitto-conf-file/

Page 160

SSL/TLS certificate generation:

https://mcuoneclipse.com/2017/04/14/enable-secure-communication-with-tls-and-the-

mosquitto-brokerLocal

Not all IP-interfaced devices use MQTT protocol. A selective, and growing, set of devices have been

interfaced to HS via mcsMQTT that use TCP as the control/status protocol. mcsMQTT handles the

device-level API and presents to the user a pseudo MQTT presentation.

https://mcuoneclipse.com/2017/04/14/enable-secure-communication-with-tls-and-the-mosquitto-broker
https://mcuoneclipse.com/2017/04/14/enable-secure-communication-with-tls-and-the-mosquitto-broker

Page 161

11 Local

11.1 IP Relay
The IP Relay tab provides setup for an eight-channel relay and eight channel opto-isolated input

interfaced via TCP connection. The hardware is often referred to as Web-Relay or Relay-Net.

An 8 Channel Relay and Input device which is available from many vendors such as

https://www.ebay.com/itm/173093192868?ul_noapp=true has been interfaced. It is shown in Figure

61. The default login is user admin and password 12345678 for IP 192.168.1.166 to configure the

device. From a browser with URL at this IP the System Setttings can be modified to change the IP, if

desired. Another setting exists to bind the input to the relay. This will be changed to not bind unless the

inputs are going to be used to also directly control the relay.

Versions 5.7 and 5.8 of the board are available. 5.7 from the link above and 5.8 from 8 Channel Relay

Network IP Relay Web Relay Dual Control Ethernet RJ45 Relay | eBay (Aug 9 delivery). The V5.7 has

known issue of network connectiveiy through routers and switches that support 1G bandwidth. The

same issue may or may not exit with the V5.8. The version is etched into the edge of the board and the

V5.8 is dated 2019. The input connector block for the V5.8 has 3 pin block for RS-485. The V5.7 in the

same position has labels of COM 5V GND as well as a second COM between the 8 inputs.

My experience with multiple suppliers on Ebay that provide USA stock are not able to assure shipment

of V5.7 or V5.8 boards. It seems both versions are sold under the same product number with the “bin”

having both versions. I find the Dingtian IOT relay described in Section 23 to be a much better

product, at a lower cost ($15 for 8 channels of input and output) and a DIN-rail case available at just a

few dollars more.

Documentation, focused on the V5.8, is available at http://mcsSprinklers.com/IOZone IP Relay.zip

Figure 61 8 Channel Relay / 8 Channel Digital Input IP Network Module

Setup for this device is contained on the Local page that is available from the HS Menu for Plug-in

mcsMQTT. From this page a table is presented where the module’s IP address and TCP port are entered

https://www.ebay.com/itm/173093192868?ul_noapp=true
https://www.ebay.com/itm/283344791254?_trkparms=aid%3D1110006%26algo%3DHOMESPLICE.SIM%26ao%3D1%26asc%3D20200818143230%26meid%3D67669bcf3c524b159c5894f8e156e0cc%26pid%3D101224%26rk%3D1%26rkt%3D5%26sd%3D154423846844%26itm%3D283344791254%26pmt%3D1%26noa%3D1%26pg%3D2047675%26algv%3DDefaultOrganic&_trksid=p2047675.c101224.m-1
https://www.ebay.com/itm/283344791254?_trkparms=aid%3D1110006%26algo%3DHOMESPLICE.SIM%26ao%3D1%26asc%3D20200818143230%26meid%3D67669bcf3c524b159c5894f8e156e0cc%26pid%3D101224%26rk%3D1%26rkt%3D5%26sd%3D154423846844%26itm%3D283344791254%26pmt%3D1%26noa%3D1%26pg%3D2047675%26algv%3DDefaultOrganic&_trksid=p2047675.c101224.m-1
http://mcssprinklers.com/IOZone%20IP%20Relay.zip

Page 162

such as shown in Figure 62. The polling interval entry is used if any of the module’s digital inputs are

being used. If not used then the polling interval text box should be left blank. The input for polling is in

milliseconds, but reasonable values of 10000 vs. unreasonable 100 should be selected when the inputs

are being interfaced.

Two protocols are supported. HTTP is selected for Port 80. Both V5.7 and V5.8 use the same HTTP

protocol. TCP is selected for Port 1234. TCP for V5.7 has been implemented.

Multiple modules are accommodated with a row provided for each module.

Page 163

Page 164

Figure 62 Local Page Setup for 8 Channel Relay/Input and YoLlink Devices

After the module has been identified a set of pseudo-Topics are created and visible on the MQTT Setup

Page, Association Tab. This table is shown in Figure 63. Note the page has been filtered in the T1

pulldown to show only the 192.168.0.166 pseudo-Topic items.

Figure 63 Local Page Psuedo-Topic for 8 Channel Relay/Input Module

The device is as a Topic by it’s IP address. Its Relay and Input points are identified by RELAY1..8 and

INPUT1..8. When the “A”ssociate column checkbox is checked then HS device is created. In Figure 63

these are 693, 694 and 695 where 694 is the input and the others are relays.

The HS devices contain buttons for relays and status only for the inputs such is shown in Figure 64 for

HS4. Similar functionality is visible in HS3 from the Device Managment page.

Page 165

Figure 64 HS4 Devices View for Relay/Input Module

All features of mcsMQTT and HS are available to the created devices and the pseudo-Topics such as

History, Charting, and Events etc.

Page 166

11.2 Local HVAC
Venstar, AirTouch, Midea, Daikin or Intesis Gateway provides a means to obtain status of a large number

of parameters and a means to control the primary functionality of the units with a local IP connection.

The IP address of any unit that is to be interfaced can be entered on the HVAC tab of the Local page as

shown in Figure 65.

Most of the thermostat parameters will automatically be associated with HS Device and Features upon

detection of data being received from the thermostat such as shown in Figure 66.

The Association tab will also provide the values of many other parameters. These parameters can be

selected with the “A”ssociate checkbox on the Association tab of the MQTT page (See Figure 67) to have

HS devices created and then the device updated on each polling interval.

The “:Power” device is “A”ssociated by default. It is used for the On/Off control of the unit. The

Homeseer API for a thermostat has the Off control as part of the “:Mode” device and selection of any

mode will result in an implicit On power state. To use the Homeseer Thermostat API the “A”ssociate

checkbox should be unchecked on the Association Tab. This will remove the “:Power” device from HS.

To explicitly control On/Off with a separate device then it should be checked.

Figure 65 Daikin/Intesis/Venstar Unit IP Address Entry

Page 167

Figure 66 Default Daikin/Intesis HS Devices

Page 168

Figure 67 Daikin Additional Parameters

11.2.1 Intesis
The Intesis interface uses WMP protocol. It has the capability to interface Daikin as well as many other

air conditioning units. When selecting Intesis/WMP the IP of the Intesis interface is specified as well as

the WMP checkbox.

The entered IP address will be polled at 15 second intervals to get status updates for units interfaced via

Intesis.

11.2.2 Daikin
Original Daikin models with Wifi are specified with the IP and without the WMP checkbox selected. For

later model Daikin BRP072C42 and likely other most recently introduced units add additional security to

the communications. To specify this later model use “https://” prefix in the IP as shown in example of

Figure 65. This consists of using SSL (https) and including a https header for key “X-Daikin-uuid”. The

Page 169

key’s value is generated by mcsMQTT at the time the user enters the Daikin’s 13-digit key from the

sticker on the unit. mcsMQTT will register the header with the unit thus allowing only communications

only with mcsMQTT. The reverse engineering of this security change is described at

https://github.com/ael-code/daikin-control/issues/27.

The entered IP address will be polled at 15 second intervals to get status updates for Daikin and Intesis.

The Venstar polling entry (in milliseconds) allows the user to poll at a desired rate or set to 0 to

disconnect from the thermostats. Upon the initial status update a set of HS devices will be created as

shown in Figure 66.

https://github.com/ael-code/daikin-control/issues/27

Page 170

11.2.3 Venstar
Venstar integration setup is found on the Local Page, HVAC tab. At statup or upon use of the Discover

button all Venstar thermostats be found and HS Device and Features setup. SSDP is used for the

discovery.

By default, the pollilng rate is 0 so it needs to be changed before any data will be returned from the

thermostat.

If a thermostat is not found or if the type is not correctly identified then they can be explicitly specified

as shown in Figure 68.

In the Venstar case there are four endpoints available. The /Info, /Sensor, and /Alerts returned data will

result in HS Device & Features being automatically created. The /Runtime endpoint will populate the

Association Table and if desired to be be viewed as HS Features then the “a” checkbox on the

Association Table is used.

Venstar control from HS Devices, Events or Script is managed to assure the requested value conforms to

the Venstar constraints. These constraints consist of a minimum delta for setpoints and the relationship

between heat and cool setpoints when in Auto mode.

Page 171

Figure 68 Venstar Integration Setup and HS Devices

Page 172

11.2.4 Midea
Midea provides several appliances that have local as well as internet control. mcsMQTT implementation

is based upon local control. It uses the library provided at GitHub - nbogojevic/midea-beautiful-air:

Python client for accessing Midea air conditioners and dehumidifiers (Midea, Comfee, Inventor EVO) via

local network. The link identifies the models of Air Conditioner and Dehumidifer that are known to be

supported using the V2 and V3 protocols.

The plugin has only been tested with the Air Conditioner, but the hooks are in place should somebody

have a Dehumidifier and desires to support the integration. The current implementation is fully

functional, but the library seems to not support fan speed and sound control, but only provides status

for these.

The library needs to be installed per the reference instructions which are:

 pip install --upgrade midea-beautiful-air

This assumes pip and Python are available on the computer where the plugin is installed.

The mcsMQTT setup is found on the Local Page, HVAC Tab of the plugin as shown in Figure 69. Required

parameters are the Midea account credentials and the rate at which HS status will be refreshed.

The library is accessed with application midea-beautiful-air-cli.exe. It should be on the search path

following its installation, but the path can be explicitly provided if the login account is different than the

install account.

Discovery of all appliances will be attempted on the LAN where HS is installed. If the appliance is on a

different LAN, then it’s IP can be explicitly specified, otherwise leave the IP textbox blank. Discovery will

be attempted at startup or when the setup parameters are modified. It can also be explicitly attempted

with the Discover button.

https://github.com/nbogojevic/midea-beautiful-air
https://github.com/nbogojevic/midea-beautiful-air
https://github.com/nbogojevic/midea-beautiful-air

Page 173

Figure 69 Midea Integration Setup and HS Devices

Page 174

11.2.5 Polyaire AirTouch

The AirTouch 2 protocol V1.1 is a local control/status implementation using TCP port 9200 which looks

to be a modernization of a serial interface. It provides the ability to get various statuses and control of

power, mode, setpoint and fan. The interface is to a hub which is likely the serial to ethernet connection

and supports up to for Air Conditioning units per hub.

mcsMQTT provides the interface to one or more hubs. The setup is contained on the Local Page, HVAC

Tab as shown in Figure 70. It has provisions for user entry of the polling rate to refresh data and the IP

where the AirTouch Hub is located on the local network.

Figure 70 AirTouch Setup

Two queries are used. One is to get the names of the units. The other is to get the status. The name

query is used at startup and continues to be used until names delivered. The status query is run at the

polling rate and when data is returned it will create the HS Device and Features. A Device will exist for

each AC Unit and Features will be created for its properties. Figure 71 provides a view of the HS UI.

Controls are buttons for state-type Features and selector for the setpoint. The unit operates using the

Celcius scale and mcsMQTT converts to Farenheit if that is what has been setup in the HS regional

settings. Celcius setpoints are specified to the nearest 0.5 degree. Farenheit ones are to the nearest

degree.

With the serial communication orientation, a CRC is used. mcsMQTT generates the CRC for packets it

sends. Provisions exists to validate the CRC for the data from the AirTouch hub, but have not been

enabled pending integration testing.

Page 175

Figure 71 AirTouch HS Device and Features

Page 176

11.3 LED

11.3.1 WLED

WLED is firmware typically loaded in ESP8266 and ESP32 that is used to provide a high degree of control

for color LEDs. The project is described at https://github.com/Aircoookie/WLED. The main string(s) of

LED support a MQTT protocol. A string that is divided into segments is controlled by REST/JSON

protocol. JSON is also used for playlist. mcsMQTT uses both protocols to provide full WLED integration.

WLED MQTT Topics all start with “wled”. mcsMQTT recognizes these topics and will create a primary set

of HS device for control and status. Advanced controls are also available with WLED and these can be

enabled by associating the Topic to HS device on the Association tab.

No setup is needed for WLED support for the primary strings. Segments and playlists use HTTP so an IP

address and the size of the segment is needed so mcsMQTT can provide the communication interface

with HS. This setup is on the Local page, LED tab as shown in Figure 72.

In this case two WLED devices have been recognized by mcsMQTT based upon the MQTT traffic with the

topic starting with wled/. One of these two has been identified to have only the primary string and no

segments with an IP at 192.168.0.143.

If any of these are to be controlled as segments then those parameters should be entered. The IP needs

to be set if either segments or playlists are going to be used. If no segments or playlists are used for a

given WLED string then no additional setup for that string is needed.

https://github.com/Aircoookie/WLED

Page 177

Figure 72 WLED Segment and Playlist Setup

A playlist has been defined called FirstPlaylist that contains the JSON format expected by the WLED

playlist. If the JSON text is modified then the focused playlist will be updated. If a new playlist is to be

setup then the Create New Playlist text box is used to give it a name.

The playlists are stored as files in the \data\mcsMQTT folder with a file type of “.wled”. If the JSON text

of a playlist is cleared then the playlist file will be removed.

To test the playlist the Send Playlist selector can be used to select the WLED unit to send what is

showing in the Playlist JSON Text textbox.

The playlist can also be requested from the HS Device with the same Send Playlist control. Event actions

to send the WLED playlist are also available.

The Device and Features setup for a WLED device, including the playlist device, is shown in Figure 73.

When the playlist is commanded the HS playlist device is updated based upon the command. There is

no actual acknowledgement from the WLED device.

Page 178

Figure 73 WLED Device and Features

The Preset device is created with a control of a Selector with values between 0 and 16. While this will

work to set each of the potential 16 presets in WLED it will be desirable to provide names rather than

numbers in the control. This is done from the Edit tab of the Preset Top using the VSP definitions.

Figure 74 provides an example where the first four have been renamed to Unknown, Orange, Rainbow

and Mood. WLED uses values starting at 1. It is likely the names given to the Preset in WLED will be

transcribed here to avoid name confusion. If there are presets that are not setup in WLED then they can

be removed from the VSP table so they do not show up in the HS Feature control.

Figure 74 Name WLED Presets

Page 179

11.3.2 Nanoleaf

Nanoleaf provides a series of lighting panels that are generally intended for wall mounting. A local API is

available by which control from HS is possible. The API provides Control/Status, Layout and Rhythm

data. mcsMQTT provides all available data using the MQTT Topic Nanoleaf/#. Control/Status and

Rhythm information is automatically associated with HS Device and set of Features. Layout information

represents a static configuration of the panels which is normally setup in the Nanoleaf App. The setup is

visible in the Association Table, but no provisions exist in the plugin to change the Layout.

The setup process consists of the following steps:

1. Pair the panel’s controller to local WiFi network. This will result in a local IP address.

2. From the mcsMQTT Local Page, LED Tab, click on the Discover button. This will pick up the IP

and populate the Nanoleaf IP table. It can also be done manually by entering the IP in the

textbox.

3. The power button is depressed for 5+ seconds until the controller’s button status lights start to

blink. Within 10 seconds click the Get Token button on the Local Page, LED Tab. The plugin will

display in the table the Token that was provided by the controller. The Token will be static until

a new one is requested.

4. A polling rate for status refresh is entered on the same mcsMQTT Page. 60000 milliseconds is

reasonable.

5. View Device and Features on the HS Devices Page or other UI.

Page 180

The setup page and the HS Devices page will look something like Figure 75 and Figure 76. The

Device is placed in Floor Nanoleaf and the IP of the controller.

Figure 75 Nanoleaf Setup

Page 181

The Status Feature is based upon successful communication with the controlled which is

performed at the specified polling rate setup on the Local Page, LED Tab.

Three Rhythm Features are made available if the Nanoleaf panel supports the music sync.

Figure 76 Nanoleaf Device and Features

Page 182

11.4 Serial (IP Serial and COM Serial)
Serial communication is normally provided via a bidirectional set of wires using a Universal Asychronous

Receiver Transmitter (UART) that is contained within the computer or provided by a USB to Serial

adapter. The technology to perform serial communication over Ethernet provides a similar capability

but is not as ubiquitous as the UART. mcsMQTT supports both of these mechanisms.

The setup is done on the Local page, Serial tab as shown in Figure 77. In this example the first row

identifies a serial connection to a Lantronix IP/Serial device. The IP/Serial device baud rate needs to be

setup manually as no provisions exists to communicate meta data over the Ethernet link.

The second row identifies port 1 at 4800 baud. The other serial parameters are set to No Parity, eight

bits, one stop bit (N,8,1). Port 1 will be COM1 for Windows or /dev/ttyUSB1 for Linux. In the Linux case

mcsMQTT will search for other /dev/ttyUSB ports if USB1 is not available. Linux switches ports,

especially when error conditions are detected so mcsMQTT tries to be tolerant of this. If multiple serial

ports are in use, then this could be problematic on Linux.

Figure 77 Serial Communications Setup

The serial data received is treated as a MQTT payload. The payload is the data that is received between

End Of Line characters. This defaults to the Line Feed (LF)/Chr(10) byte. It can be change in the setup

for each serial port. If this field is left blank then a message end is defined as three second pause in the

reception of serial data.

Provisions have also been made on the transmit side to limit the rate of message transmission. This is

not normally needed, but if a limited link budget exists then it could be useful.

Data is transmitted via the DeviceString of the HS device that was created for each serial port such as

shown in Figure 78. Three controls are provided. The Submit button will send the DeviceString to the

serial port. The Close and Open buttons will close and open the serial port. If strings are going to be

sent through other mechanisms the CAPI is used to interface with mcsMQTT.

Page 183

Figure 78 Serial Port HS Device

Serial messages are managed as MQTT messages with the topic “Serial/xxx” where xxx is the port

address that was setup. Other features of mcsMQTT such as JSON decoding, History retention, Charting,

etc. are available for the serial messages.

In addition, decoding of known byte streams is available. The decoded data will be presented in JSON

format and available in the Association Table for subsequent use.

In the case of the HEX decoder, the received bytes are expanded into an ASCII hex format (e.g. byte 31 is

converted to bytes with string representation of “1F “). With HEX decoding, the data being sent is also

encoded into bytes from a ASCII hex input. (e.g. “1F 20” is sent as two bytes 31 and 32).

The Jacuzzi decoder will also expand the serial bit pattern into a JSON set of messages. These appear in

the Association Table on the MQTT Page. If Auto-Create is enabled on the MQTT Page, Client Tab then

the HS Device and Features will be automatically created such as shown in Figure 79.

The Jacuzzi interface is somewhat specialized where a connection is made every minute or upon need to

deliver a user command. The connection remains open for five seconds and then closes until the next

polling cycle a minute later. Because of this specialized management of the interface the HS Device that

shows connection/port open/closed status will not reflect the actual state of the port, but will show the

desired state. To stop communication with Jacuzzi, then command the port to be closed.

Page 184

Figure 79 Jacuzzi Auto Device Creation

Page 185

11.5 Broadlink / BestCon RM Pro and Mini
Broadlink produces a family of reasonably priced devices that are capable to transmitting IR and RF,

learning IR and RF codes, and has an online repository of many codes of commercial products. The

device is designed to operate with an App via cloud. It can be taken out of the cloud for local operation.

Much reverse engineering has been done with a leading contribution by with a python implementation

available at https://github.com/mjg59/python-broadlink.

The mcsMQTT integration started with the .NET rewrite of the early python code available at

https://github.com/kemalincekara/Broadlink.NET that includes several models through the RM2. With

a combination of Wireshark and other information gleaned from various sources the capability

expanced to include models through RM4 Pro. The RM4 Pro and RM4C Mini have been tested in this

integration, but nothing has been intentionally done to prevent earlier models’ operation.

The integration with HS provides the ability to connect the broadlink device to the local network,

discover the broadlink devices this has been paired with the network, learn IR and RF codes from a

remote, import IR codes from a Pronto hex format, and transmit IR and RF. The RF capability of the

Broadlink is robust for carrier frequencies locused on 433 MHz and 310 MHz, but falls off rapidly for

other frequencies. Fans are often controlled by 350 MHz or 305 MHz and the Broadlink will not be able

to be used in these applications. Bond is a supplier for a wider RF frequency range.

11.5.1 Putting Broadlink Unit on Local Network
Joining the network is a one-time activity to teach Broadlink what network to use. It is done with

Broadlink device setting up an open Access Point on a SSID it advertises. A computer or smartphone

with WiFi capability connects to the Broadlink AP and then sends the desired network credentials.

Broadlink device then drops its AP and connects to the desired network. It will reconnect to the network

with each power cycle.

A utility is provided for the case where the HS computer does not have WiFi, but some Windows/Linux

computer on the network does. A smartphone can also be used following the standard App for getting

connected to the cloud, but stopping without actually completing the process. The danger is not

stopping and the device is now cloud rather than local control. In this case one needs to start over with

the long press of the reset button.

Each Broadlink device will communicate with one IP. This is normally the cloud server when using the

Broadlink App. To take it out of the cloud it needs to setup to use the IP where mcsMQTT/HS is running.

This is done by putting the device in setup mode where it is producing an AP with SSID “BroadlinkProv”

or “Broadlink_WiFi_Device” and then providing it a packet that identifies the local network credentials.

The device has two setup modes. One is smart and one is AP. The AP is the one that is to be used.

Smart is indicated by a rapid flashing LED. The AP is by an intermittently flashing LED. Hold the

Broadlink setup button with a paperclip until it fashes rapidly. Relase it. Hold again for five seconds, but

not 10 seconds, until it blinks slowly. This setup mode selection may change among Broadlink models so

follow the instructons that came with the unit to put it in AP Setup mode.

The packet with network credentials is provided by mcsMQTT with the “Join Network” button. It can

also be provided by running the utility “BroadlinkJoinNetwork.exe” (described below) or can be done

https://github.com/mjg59/python-broadlink
https://github.com/kemalincekara/Broadlink.NET

Page 186

with smartphone, but one needs to abort the smartphone process before joining the cloud. Only one of

these three options needs to be used.

This is setup from the Local page, IR/RF tab of mcsMQTT. The local network SSID, password and security

mode information are provided followed by the button to join the network. See Figure 80.

Figure 80 Take Broadlink Device out of Cloud

Once the Broadlink deivce is in AP mode then use the Join Network button to allow it to join the local

network. It’s IP will be obtained by DCHP so look at DHCP server/router to get it or use other means to

sniff IP addresses. It may take multiple clicks of the Join Network button. Success is indicated by the

BroadlinkProv SSID is no longer present and a DHCP server has given the Broadlink device an IP address.

The WiFi network credentials are not retained, but only used in conjunction with the Join Network

button. This means that they need to be reentered if a second Broadlink device is going to be added.

As an alternate to joining the network a console application is also included in the bin\mcsMQTT that

performs the same function as the Local IR/RF page. This allows the target computer to establish the

network connection with the Broadlink device independent of HomeSeer. Note that when running

“BroadlinkJoinNetwork.exe” the file “broadlink.dll” also needs to be present at the location where

“BroadlinkJoinNetwork.exe” is running. Both of these files are available in the Updater zip or in

\bin\mcsMQTT folder.

It is used with a command line containing parameters of “WiFi SSID, WiFi Password, Security Mode

Number”. From Windows it is run from a console with path currently at \bin\mcsMQTT using the

command like

BroadlinkJoinNetwork “MySSID,MyPassword,4”

A similar Terminal window command is used on Linux

mono BroadlinkJoinNetwork.exe “MySSID,MyPassword,4”

It will provide a feedback direction to get the Broadlink device into mode to allow the WiFi network to

be used. This is 10 seconds hold followed by 5 to 9 second hold of the reset button. From the factory

Page 187

the Broadlink device will already be in this mode and have the Broadlink* SSID being advertised. In this

case there is no need to use the reset button.

If there are issues with the command syntax there will be feedback when running the application. It

may not take the first time so repeated execution may be necessary. The “BroadlinkProv” or

“Broadlink_WiFi_Device” SSID will drop off as it connects to the local network. The blue lilght on unit

will stop blinking when the WiFi to the local network has been setup.

11.5.2 Use of Broadlink Unit

11.5.2.1 Find Broadlink IR-RF Device(s) that are on WiFi Network

It may be possible to discover the IP address and this will be done each time mcsMQTT starts, but there

are times that the Broadlink device is silent to this request. The known IP address can/should be

entered in the text box provided. Refresh the page if entering multiple IPs. The status of the discovered

units and the IP entry is shown in Figure 81. If units are not found then the name (e.g. RM4 Pro) will not

be shown.

At startup, entry of an IP or use of the “Scan for Broadlink Device” button a broadcast query will be

made to confirm the Broadlink Unit is online and to get its authorization and encryption credentials. It

will also be done if a HS request to send a code is made and prior attempts have not succeeded.

Figure 81 Broadlink Unit Discovery and IP Address

11.5.2.2 Modes of Operation

The modes of operation affect the auto assignment of code to HS Features when learned and if HS

Feature is represented as an Appliance with VSP entries for each Code or as each Feature having a single

Code. These options are shown in Figure 82.

Page 188

Two modes of operation are provided to create Device and Feature for use in HS. One is to

automatically create the Feature when the Code has been learned. It will be assigned to the Broadlink

unit used for learning.

Two Device/Feature models are supported for Broadlink IR/RF. One is a Device for IR and/or RF for a

Broadlink Unit. Features of the Device are the appliances that will be controlled by the specific

Broadlink Unit. The DeviceValues and Status pairs will contain the set of codes for the appliance. This s

a concise representation of the control information

The second is oriented for voice control where each appliance a Broadlink Unit will control will be a

Device. Features will be created for each IR/RF code used to control the appliance.

A user can select which model best suits their need. They can be changed back and forth without losing

the appliance code information, but swapping will result in new HS Device Ref numbers. Examples of

these two representations are shown in Figure 85 and Figure 86.

Figure 82 Broadlink Use Operational Mode Selections

11.5.2.3 Build IR & RF Code Library (Learn or Import)

The library consists of a set of Appliances and a set of Codes for each Appliance. It can be populated by

any combination of import from Pronto format or learning with one of the Broadlink devices. Separate

library entries are made for IR vs. RF.

To start a learning process a Broadlink Unit needs to be selected. It will be the one being controlled

when learning from a remote. If auto-assignment is selected it will also be the one for which a HS

Device will be created. Both the Broadlink Unit selection and auto vs. manual assignment selection are

shown in Figure 86.

Note that the unit used for learning does not need to be the one later used to transmit codes. The

library is just the Appliance and Code and has no relationship to the Broadlink unit. The Appliance/Code

relationship to Broadlink unit relationship is made as HS Features are generated.

Page 189

Figure 83 Building of Broadlink Appliance/Code Library

Learning also requires that an Appliance and the Code function be identified. These are two text boxes

shown in Figure 83. When the learning function is complete the code function text box will be cleared.

The appliance text box will remain to allow subsequent code learning.

IR learning is usually straightforward where one observes the LED on the front of the Broadlink unit to

know it is in learning mode and then send the code from the remote and the LED will go dark to indicate

the learning is complete. There will also be similar feedback in the Feedback window of the Local Page.

RF learning is a two-step process. The first is to learn the 433 MHz vs. 315 MHz frequency being sent.

The second is to learn the RF code on that frequency. The RF learning starts with the Frequency

detection. When found the LED will no longer be illuminated, mcsMQTT will show in red Feedback that

this phase is complete and the RF Freq button will be replaced by a RF Code button. Click on the

mcsMQTT RF Code button to start learning of the code at the detected frequency. A longer press is

used for the frequency learning. It may need to be repeated until the frequency is determined. Prompt

will be present for short press of the remote for the code to be learned. Usually only one press is

needed and the LED will no longer be illuminated to show the success. mcsMQTT will also provide the

success feedback.

There are times when learning does not go smoothly. The Cancel learning button can be used to stop

the process that looks to not have completed. Another attempt can then be made.

Rather than learning an appliance code function from a remote, a Pronto hex code can be entered.

There are two ways to do this. One is to cut/paste a Pronto code for another source. In this case the

appliance name and code function need to be entered prior to entering the Pronto hex in the text box.

Page 190

 The second approach is to import a file that contains the Pronto codes for a given appliance. In this

case the filename rather than the individual Pronto code is entered. The contents of the file are

assumed to be alternating lines of the code name and the hex code in Pronto format. Blank lines are

ignored. For example, a file may have the following contents. The code names are imported with

spaces replaced by underscores to avoid syntax and parsing issues.

Toggle power

0000 006C 0022 0002 015B 00AD 0016 0016 0016 0016 0016 0016 0016 0041 0016 0016 …

Toggle display

0000 006C 0022 0002 015B 00AD 0016 0016 0016 0016 0016 0016 0016 0041 0016 0016 …

While learning can be done of IR and RF code from an existing remote device, the IR learning can also be

imported from codes available on internet sites such as http:// irdb.tk/find/ that will be available in

pronto hex format. RemoteCentral is another location that a large user-contributed database of pronto

codes, but it is somewhat more dated. An example of the import format for Samsung TV numbers 0 and

1 is shown in Figure 84. To use them enter the appliance name and code name into the mcsMQTT

textboxes, copy from the site the hex sequence text and paste into the Import Codes from Pronto Hex

format textbox.

Figure 84 Sample Pronto IR Code

The IR and RF codes are stored in \Config\BROADLINK.ini. It is possible to manually add entries to this

file if there are other sources from which the codes can be imported. The “Assign IR Appliance to HS”,

“Assign RF Appliance to HS”, and “Remove Appliance from HS buttons” are used to manage the subset

of the Appliances in BROADLINK.ini (i.e. library) that are visible to HS. For example, the “View Learned &

Imported Library” selector can be used to view what appliances are available in the library. The

appliance name then can be put in the “Appliance name to be learned to assigned to HS” textbox. The

“Assign IR Appliance to HS” button then used to create a HS control for this appliance and this control

will include all the IR codes from the library for this appliance.

http://irdb.tk/find/

Page 191

For Pronto hex then code can be obtained interactively from the web site and the code pasted into the

pronto hex text box after a name has been entered for the code. mcsMQTT will convert the code to the

Broadlink format and stored just as if it had been learned with the physical remote.

11.5.2.4 Assign Appliance Codes from Library to HS Feature

Figure 85 Broadlink VSP Oriented Representation

Figure 86 Broadlink Feature-Oriented Representation

Page 192

Figure 87 Assignment of Appliance & Code to HS Feature

Appliance Codes that already exist in the library can be manually assigned to HS Feature. The Broadlink

Unit and the Appliance need to be selected followed by the button to create the HS Feature. They can

also be removed from HS, but not removed from the library, using the second Manual Operation button.

Removal from the library is described in Section 11.5.2.5.

It is also possible to replace the codes from one Broadlink unit HS Device into another such as may be

desired when replacing the physical unit or moving it to a different location. Rather than replacing a

Broadlink device it is also possible to clone all the Appliances that have been associated into another

Broadlink unit.

11.5.2.5 Appliance Code Library Edit and Management

All learned and imported codes are maintained in the file \Config\BROADLINK.ini. One section is for IR

and one for RF. Each row will contain the Appliance|Code name and the base64 Broadlink format for

playback.

This file is augmented as new codes are learned and imported. The library of codes can be made

available to HS using the manual assignment buttons shown on Figure 87. Prior to manual assignment

the Broadlink Unit selection radio needs to be set and the Appliance name text box needs to be

completed.

Page 193

This same assignment operation can be done immediately after a new code is learned. This is the auto-

assignment option shown in Figure 83. If the same Appliance is to be controlled by two Broadlink Units

then the second one will need to selected with the radio and the manual assignment button used.

A dropdown selector is available to view the Appliance|Code names contained in the library. There is

no control action with a selection. However, after this selection the ability to edit the pulse and repeat

properties as well as deleting the item from the library becomes enabled.

The “Delete Code from Library” button the item will be permanently removed from Config\Broadlink.ini

file. The textboxes for pulse and repeat will augment the library code with instructions for modifying

the pulse timing or repeating the code. See Section 11.5.3 for more information on these properties.

The event JSON, when used, will have priority over properties defined here in the library.

11.5.3 Broadlink MQTT and Event Interface
The Broadlink information will also be available via the MQTT Page, Association and Edit tabs. The Topic

structure is “Broadlink/IPxxxx/YY/Appliance/Code” or “Broadlink/IPxxxx/YY/Appliance” depending upon

the HS Device model of Feature vs. VSP, respectively. The IPxxxx will be the IP of the Broadlink device.

YY will be IR or RF. Appliance and Code are the names assigned at time of learning.

The Association Tab will show which topics have been associated with HS devices and will also show a

“/set” suffix added for the publish topic. When HS commands an IR or RF code there will be a MQTT

message sent. If a MQTT message is received that matches the topic then the code will be sent through

the Broadlink Unit.

When used in HS Events the control action will be the Broadlink IR or RF feature. There are no triggers

available for when an IR or RF code has been learned or sent beyond that provided by the DeviceValue

change of the feature.

Generally, when an IR or RF code is requested to be sent the code will be the one that was learned. It is

also possible to modify the IR code as part of an Event Action. In this case a JSON payload is used to

specify the tweaking that is to be performed. See Figure 88.

The JSON payload consists of any of three keys. If a key is not in the payload, then the code will be used

unchanged from the learned library.

“code” is used when the VSP device model is used to specify which code is being sent. It can also be

used in the Feature model and should be the same as the code using the Topic.

“repeat” is the number of times the code IR should be sent. A value of 0 is zero repeats. 1 is for one

repeat which means the code is sent twice.

“pulse” is the change in the number of pulses that represents each On/Off burst. This can be used to

tweak the timing of the IR signal for sensitive equipment. A value of -1 will reduce the number of pulses

at each transition by one. A value of 3 will increase the number of pulses by 3.

Page 194

Figure 88 Broadlink Control Event Action

11.5.4 Broadlink Sensors
Broadlink makes available a USB power cable (Model HTS2) that contains temperature and humidity

sensors in the cable. The RM4C Mini does not support this cable, but others do. The earlier RM versions

only support temperature. If it is being used then mcsMQTT will create the HS devices as shown in

Figure 89 HS Devices for Broadlink Sensors

The device delivers temperature in Celcius. If Farenheit is desired then use the Edit tab or popup

Expression text box to do the conversion. For example enter $$PAYLOAD:*1.8+32.

Page 195

11.6 Bluetooth

11.6.1 Sensors and Actuators
There are a multitude of low powered devices that transmit locally via Bluetooth. Most are sensors such

as temperature, humidity, door/window, motion, etc. There are some that can be controlled such as

the Switchbot Bot or Curtains.

Bluetooth is similar to Zigbee with respect to battery usage and range, but generally a hair slower in

responding. This difference will usually not be noticed. Because of the limited range, whole-house

coverage cannot be achieved with a single Bluetooth receiver. Fortunately, the ESP32 has built-in

Bluetooth in most of its models that can act as a bridge between Bluetooth and WiFi or wired ethernet.

Firmware for the ESP32 comes in various varieties such as with ESPHome and Arduino projects.

Openway is the choice made for support with mcsMQTT due to it extensive library of devices that it will

decode and active support to handle new ones as they become available. The firmware is available at

links from OpenMQTTGateway v1.7.0 .

mcsMQTT will accept all Bluetooth devices discovered by OpenMQTTGateway and place their properties

in the Association Table that is available on the MQTT Page, Association Tab. For the popular ones such

as Shelly and Switchbot it will auto-create HS Device and Features. The others of interest can be

associated with HS by clicking the “a” column checkbox on the Association Table.

In the case of Shelly Bluetooth devices, it is possible to use the ESP32 contained within the powered

Shelly Gen2 and Gen3 devices to act as gatetways. mcsMQTT will automatically detect the Shelly

Gen2/3 devices and configure them to support the gateway function using the same MQTT message

format that is used for OpenMQTTGateway. It will use the MQTT Topic ShellyBLU/x/BTtoMQTT/y where

x is the Id of the Shelly Gen2/3 device and y is the MAC address of the transmitting Bluetooth device.

mcsMQTT is made aware of OpenMQTTGateway (OMG) from the Local Page, Bluetooth Tab as shown in

Figure 90.

https://docs.openmqttgateway.com/

Page 196

Figure 90 Bluetooth Sensor and Actuator Setup

OMG has its own Web Server for configuration and it includes specification of the base Topic that will be

used. It defaults to “home/” but can be changed if desired. Whatever is used is identified to mcsMQTT

by the Base Topic entry shown on Figure 90. If more than two ESP32 devices are being used for OMG

then each can be specified using semicolon to separate each. mcsMQTT does not expect the trailing “/”

in its setup as is used in OMG.

This Topic is used to know that a message may need special handling to look for Shelly, Switchbot and

others for auto-creation. It is also used in conjunction with the three radio button positions under the

Topic. The default is Discover and operates like the same on the MQTT Page Client Tab for MQTT Topic

discovery. This can be chatty as some BLE devices tend to advertise their presence every few seconds.

The plugin also configures OMG to send only messages for things that look like sensor/actuator type

things and excludes the beacon type reports that are normally used for tracking. This significantly lowers

the traffic.

When the radio is in the middle position, mcsMQTT will create a whitelist of BLE devices that OMG

should forward updates. This really quiets it way down. The whitelist is formed by the set of BLE devices

that have been associated with HS. In the Shelly BLU DW case, the message is only received when the

sensor changes.

Page 197

Another message filtering approach to reduce the transmissions from OMG is to use its blacklist. Any

Topic in the Association Table that from OMG can be checked in the “r” column to mark it for rejection.

The set of rejected Topics will be delivered to OMG as the blacklist.

In summary, Association Table “a” is used for whitelist and “r” is used for blacklist of the OMG-delivered

Topics.

The bottom position will disable all updates from OMG.

The received data in the Association Table will look similar to Figure 91. This figure shows where some

of the properties of the Shelly DW have been automatically associated with HS Devices, where some are

not associated, but are available for viewing or association, and other device Emporia, PROV_437034v

was not associated. The HS View of the Shelly DW Device is shown in Figure 92.

Figure 91 Bluetooth Devices in Association Table

Page 198

Figure 92 Shelly Bluetooth Door Window Sensor

11.6.2 Beacon
Beacon monitoring using BLE is available on Windows and Linux platforms. Evaluation on Linux has only

been done with RPi using its built-in Bluetooth capability. Windows 10 is required for the Windows

platform using a USB Bluetooth receiver.

On Windows 10 platform that has a Bluetooth Low Energy interface it is possible to monitor the

presence of BLE beacons with HS4 version of mcsMQTT. The products used for this evaluation include

the following as well as other BLE beacons.

Figure 93 Bluetooth Beacon and Interface

Beacon discovery is controlled by the setting on the Beacon tab of the HS4 Local page as shown in Figure

94 or on the HS3 BLE page. The top radio disables the beacon scan on the local computer and does not

process any MQTT Beacon/ topics from remote computers. The second radio continues to update the

status of previously discovered beacons. The third radio enables discovery of new beacons. The fourth

Page 199

radio disables the local computer BLE processing but will update existing beacons from remote

computers. The last radio allows new beacons to be discovered from remote computers.

Figure 94 Beacon Tab Settings

Discovered beacons appear in the Association table. They can be easily identified by using the Topic

filter of Beacon in the T1 position. A beacon for which status updates are desired in HS will be

associated by using the “A”ssociate column checkbox. The bottom row of Figure 95 illustrates this and

the HS device appearance is a shown in Figure 96.

Page 200

Figure 95 BLE Beacon in Association Table

Figure 96 Beacon Status in HS

When a beacon advertisement is in range of the Bluetooth interface the HS device will be updated with

the signal strength (negative of RSSI) shown in the DeviceValue and green icon. The signal strength is

smoothed with a low pass filter so its value will not be jumping around due to sampling differences.

When out of range for 60 seconds the icon will change to red and the DeviceValue will be changed to -1.

In a typical situation there will be only a limited number of beacons that are of interest. Once these

have been discovered then the Beacon tab entry changed to the second or fourth position. It can be

changed to allow new discovery later if a different beacon is to be monitored.

Page 201

The Association table will contain beacons that not of any interest. To reduce clutter the “O”bsolete

column checkbox can be used to remove them.

Beacons that are associated with HS devices can be customized on the Edit tab to change the location

and name if desired as shown in Figure 98. Edit tab is most easy viewed by clicking the Ref column

button of the device that is being edited from the Association table.

The global beacon timeout and RSSI parameters setup on the Local page, Bluetooth tab shown in Figure

94 can be altered on a beacon-by-beacon basis on the Edit tab. When a beacon is accepted for HS

device association these parameters will default to what has been setup on the Local page, but later an

be changed on the Edit tab or the MQTT page.

Two applications are made available for Linux that can be run on local or remote computers. BLEMQTT

is for HS3 positions identification support. BLEMQTTHS4 is for HS3 or HS4 to support Home-Away logic.

In the HS3 case the mode of operation of the plugin for BLE is selected on the BLE Page as shown in

Figure 97.

Figure 97 HS3 BLE Application Mode Selection

Page 202

Figure 98 Beacon Parameter Edit

Page 203

11.6.3 Espresense
Espresense is a application that is installed in an ESP32 that listens for Bluetooth beacon advertisements

and can interrogate them for more detailed information. What it attempts to do is overcome the

randomization of the advertised MAC address that is done on smartphones, but fingerprinting the

reporting device using behavioral and other information that it can ascertain. This means it may be

possible to provide tracking of presence of a smartphone as well as other Bluetooth devices that provide

a periodic advertisement.

The Espresense integration is a middle-ground integration for Bluetooth between what is available with

HS3 where a specific (X,Y) coordindate is determined based upon a beacon’s signal strength relative to a

set of ESP32 or RPI listening stations. The other extreme is the HS4 integration where the objective of

Bluetooth tracking is to determine if a beacon is within or out of range to provide a simple home vs.

away status. The Espresense integration isolates a Bluetooth device to the nearest ESP32 station where

the assumption is that ESP32 stations are located in various rooms so isolation provides the room

location of the Bluetooth device.

The integration provided by mcsMQTT is a variant of the integration of the HomeAssistant integration

described at https://espresense.com/. This link will also be the starting place to understand the

hardware and simple approach to loading the application in an ESP32.

mcsMQTT accepts the MQTT messages delivered on the espresence/devices/+/+ topic where first +

identifies the Bluetooth device (fingerprint) and the second + identifies the ESP32 room identification.

The JSON payload on these topics includes distance between the Bluetooth device and the ESP32 room

as well as other related information.

mcsMQTT will create a HS Device Feature for each user-selected Bluetooth device and report which

room this device is located. A room location is setup by the user as a distance radius from the ESP32. It

is also characterized by a dwell time after which the Bluetooth device is assumed to have exited the

room if no distance update has been received for this time. The radius and dwell parameters are setup

on the Rooms Table shown in Figure 100. This table can also be used to delete rooms that have become

obsolete and are no longer being reported by Espresense. If a Room is still being reported then it

cannot be removed from the table.

There are two special case “virtual” rooms called Home and Away. A Bluetooth device is assigned the

Home room when it is still reporting, but no longer within the radius of any of the ESP32 rooms. Away

room is assigned when no reports from any ESP32 room has been received for 60 seconds. A typical HS

Devices page view for a couple Bluetooth beacons is shown in Figure 99. In this example the first

Bluetooth device “eddy….” Is showing Home status with icon reporting no specific room. The second

“apple…” shows it is in room family. Family is the name setup in the ESP32 configuration of the room

name. The dates shown are the times they entered the room.

https://espresense.com/

Page 204

Figure 99 Espresense Status Reporting in HS Device Features

The setup of the room and Bluetooth device parameters is done on the Local Page, Bluetooth tab on

HS4 or on the BLE Page of HS3. Two tables contain configuration parameters. One for each

ESP32/Room and one for each Bluetooth device. See Figure 100.

The first table shows “Away”, “Home” and two ESP32 rooms. The room “family” has a radius of 30 feet

and the room “den” is 5 feet. A Bluetooth device needs to much closer to the den ESP32 than it needs

to be to the family ESP32 for it to be considered in the den. For both rooms the dwell time is set at 10

seconds so if the distance is not updated in 10 seconds the room will be assigned elsewhere. The

assignment priority is:

 1 Within Radius of nearest room with room still reporting within dwell seconds
 2 Within radius of a room with bigger radius and room still reporting it
 3 Outside the radius of currently assigned room with transition occurring in dwell seconds
 4 Outside the radius of all rooms and some room still reporting it (Home)

 5 No room reporting it for 60 seconds (Away)

Selecting a large radius will allow overlap and could eliminate all “Home” assignments. Selecting small

radius will result in being the room when very close to the ESP32 which could result in a large number of

“Home” assignments.

Selecting a large dwell time will delay the reporting of a Bluetooth device leaving a room unless it gets

within the radius of another room. Selecting a small dwell time could result in excessive transitions out

the room due to intermittent reporting from the ESP32.

The Bluetooth devices table allows creating of HS Device Features to track a Bluetooth device. It also

provides the ability to record the changes of room assignment in a database from which charts or

history log can be later viewed. The final parameter is the TxPower gain of the Bluetooth device. This is

not an exact calibration, but does provide a means to account for variation in the Tx Power of different

Bluetooth devices. Typically, battery powered devices transmit at lower power levels than those that

use mains power.

Page 205

Figure 100 Espresense Configuration in mcsMQTT

Espresense publishes distance information in MQTT Topics espresense/rooms and espresense/devices

Topics. This information is redundant between the two. mcsMQTT uses that which is published in

espresense/devices. The ESP32 setup should exclude the espresense/rooms. The telemetry topic

contains ESP32 parameters that is not used in room identification, but could be of interest. Figure 102

shows a suggested setup for Preferences and Calibration.

The matrix of distance of each Bluetooth device from each ESP32 room as well the time since that

distance was published in available for analysis as shown in Figure 101. A button is provided to refresh

the matrix of data. Distance and time in black is the assigned room for the device. The distance units

will be either f=feet or m=meters. The time units will be up to three digits with units of s=seconds,

Page 206

m=minutes, h=hours, d=days. Devices that have not been associated with HS will be shown with gray

names. Those that are associated will be black.

Two checkbox controls are provided. The first puts the MQTT data received for the rooms and devices

in the Association table of the MQTT Page, Association tab. This raw data can then be used in HS or

used for analysis with charts.

The second checkbox is used to inhibit addition of newly discovered devices. Each time mcsMQTT starts

it will remove the unassociated espresence devices. This checkbox provides this control to remove them

immediately and to prevent new devices from being included in the room assignments.

Figure 101 Espresense Distance - Time Matrix

All distance information reported by Espresence is available on the MQTT Page Association Tab if the

checkbox is enabled to show it. In general, it will not be of much interest unless doing investigative

Page 207

analysis. The downside to using the checkbox is the CPU burden it could incur when raw data is being

received at a high rate. It will be under the espresence/# Topic such as shown Figure 103. An example

of viewing time history of Bluetooth device and distances is shown in Figure 104. This was a case for

ESP32 stations being unpowered and then repowered for testing. To support this chart data was

collected in the internal Sqlite database. Other than the thee MQTT Topic checkboxes the others are at

user discretion.

Figure 102 Suggested Espresense ESP32 Setup

Page 208

Calibration is setup to balance the capability provided by mcsMQTT and Espresense. The top two

settings are for what MQTT traffic is produced as a Bluetooth device is at long distance from the ESP32.

The two lower settings are for MQTT traffic that is published when near the ESP32. Each pair of settings

are for distance threshold and for time threshold.

The maximum distance setting is not critical as the maximum time will typically occur before the

distance threshold has been exceeded for most battery-operated Bluetooth devices.

The maximum time setting works in concert with the time setting for a close device and the 60 second

monitoring interval used by mcsMQTT. When an ESP32 has not published a distance update for 60

seconds then mcsMQTT will move the device out of a previously assigned room. The total time to

recognize a device is no longer present in a room then becomes the max time setup for ESP32 plus 60

seconds.

When a device is close to the ESP32, the ESP32 will unconditionally publish distance at the close time

interval which is shown Figure 102 at suggested 10,000 millisecond rate. When the device has gone out

of range of the ESP32 then it will no longer be published at this rate. mcsMQTT will then detect it 60

seconds later.

This unconditional time interval for in-range devices can be made shorted to reduce latency at the

expense of CPU burden to handle the more frequent raw data reporting.

The final setting is the amount a device needs to move before a MQTT message is produced. This is in

addition to the unconditional periodic reporting. Since the raw data is being used to select the closest

room for a Bluetooth device, the selection of the minimum distance interval should be made in context

of how far apart ESP32 stations are located. If they are far apart then a larger minimum can be used

since it will take some time for the device to move. If they are close then a smaller distance should be

used to the point where the variation in RSSI measurements result in apparent motion when none has

actually occurred.

Page 209

Figure 103 Espresense JSON Data in Association Tab

Figure 104 Espresence Room vs. Distance Visualization

Page 210

11.7 GW1000
GW1000 is a USB-powered device that converts RF protocol to WiFi for Ecowitt and Ambient sensors.

The integration of this device with mcsMQTT is based upon the work and source code provided by

Homeseer member jim@beersman.com.

These sensors use different RF Frequency depending upon the region where they are being used so

when obtaining the GW1000 assure that the correct frequency for your region. One source is Amazon

at https://www.amazon.com/ECOWITT-Gateway-Temperature-Humidity-

Pressure/dp/B07JLRFG24/ref=sr_1_2_sspa?crid=26R3CDJOTDDY1&dchild=1&keywords=gw1000+wifi+g

ateway&qid=1630618449&sprefix=gw1000%2Caps%2C646&sr=8-2-

spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUExMVBNMUI1TVlLWTRXJmVuY3J5cHRlZElkPUEw

MDA0ODA0R1gyUUhJWlFNR0pSJmVuY3J5cHRlZEFkSWQ9QTA3MDEwNTczOVhYT1lESlVRTDNWJndpZGdl

dE5hbWU9c3BfYXRmJmFjdGlvbj1jbGlja1JlZGlyZWN0JmRvTm90TG9nQ2xpY2s9dHJ1ZQ==

Figure 105 GW1000 RF-WiFi Gateway

The GW1000 hardware is setup from the WS View App for Android or Apple. Other than this setup

there is no further need for the App, but it can still be used if desired to view sensor data. Data remain

local and does not depend upon the cloud.

To perform the setup in WS View the following steps are performed

1. Connect to local WiFi network using the WiFi button on the GW1000. See instruction manual

that came with the GW1000 if necessary.

2. Device List, click Device, More. Publish to Weather Service. In this case it will be the

“Customized” service that is being provided by mcsMQTT. See Figure 106 for context. Start on

the Live Data view. Weather Services. Click “Next” or “More” in upper right until the

“Customized” option becomes available. About four clicks. The two fields that need to be

edited are the Server IP and Port. These should match the NIC address and port that have been

(or will be) setup on the mcsMQTT Local Page, GW1000 Tab. It cannot be 127.0.0.1, but needs

to be the actual V4 IP address being used by HS. As an option, the update interval can be

changed from the default. The Save button and the Finish button are then used to program the

GW1000 to send data updates.

https://forums.homeseer.com/member/74194-jim-beersman-com
https://www.amazon.com/ECOWITT-Gateway-Temperature-Humidity-Pressure/dp/B07JLRFG24/ref=sr_1_2_sspa?crid=26R3CDJOTDDY1&dchild=1&keywords=gw1000+wifi+gateway&qid=1630618449&sprefix=gw1000%2Caps%2C646&sr=8-2-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUExMVBNMUI1TVlLWTRXJmVuY3J5cHRlZElkPUEwMDA0ODA0R1gyUUhJWlFNR0pSJmVuY3J5cHRlZEFkSWQ9QTA3MDEwNTczOVhYT1lESlVRTDNWJndpZGdldE5hbWU9c3BfYXRmJmFjdGlvbj1jbGlja1JlZGlyZWN0JmRvTm90TG9nQ2xpY2s9dHJ1ZQ==
https://www.amazon.com/ECOWITT-Gateway-Temperature-Humidity-Pressure/dp/B07JLRFG24/ref=sr_1_2_sspa?crid=26R3CDJOTDDY1&dchild=1&keywords=gw1000+wifi+gateway&qid=1630618449&sprefix=gw1000%2Caps%2C646&sr=8-2-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUExMVBNMUI1TVlLWTRXJmVuY3J5cHRlZElkPUEwMDA0ODA0R1gyUUhJWlFNR0pSJmVuY3J5cHRlZEFkSWQ9QTA3MDEwNTczOVhYT1lESlVRTDNWJndpZGdldE5hbWU9c3BfYXRmJmFjdGlvbj1jbGlja1JlZGlyZWN0JmRvTm90TG9nQ2xpY2s9dHJ1ZQ==
https://www.amazon.com/ECOWITT-Gateway-Temperature-Humidity-Pressure/dp/B07JLRFG24/ref=sr_1_2_sspa?crid=26R3CDJOTDDY1&dchild=1&keywords=gw1000+wifi+gateway&qid=1630618449&sprefix=gw1000%2Caps%2C646&sr=8-2-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUExMVBNMUI1TVlLWTRXJmVuY3J5cHRlZElkPUEwMDA0ODA0R1gyUUhJWlFNR0pSJmVuY3J5cHRlZEFkSWQ9QTA3MDEwNTczOVhYT1lESlVRTDNWJndpZGdldE5hbWU9c3BfYXRmJmFjdGlvbj1jbGlja1JlZGlyZWN0JmRvTm90TG9nQ2xpY2s9dHJ1ZQ==
https://www.amazon.com/ECOWITT-Gateway-Temperature-Humidity-Pressure/dp/B07JLRFG24/ref=sr_1_2_sspa?crid=26R3CDJOTDDY1&dchild=1&keywords=gw1000+wifi+gateway&qid=1630618449&sprefix=gw1000%2Caps%2C646&sr=8-2-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUExMVBNMUI1TVlLWTRXJmVuY3J5cHRlZElkPUEwMDA0ODA0R1gyUUhJWlFNR0pSJmVuY3J5cHRlZEFkSWQ9QTA3MDEwNTczOVhYT1lESlVRTDNWJndpZGdldE5hbWU9c3BfYXRmJmFjdGlvbj1jbGlja1JlZGlyZWN0JmRvTm90TG9nQ2xpY2s9dHJ1ZQ==
https://www.amazon.com/ECOWITT-Gateway-Temperature-Humidity-Pressure/dp/B07JLRFG24/ref=sr_1_2_sspa?crid=26R3CDJOTDDY1&dchild=1&keywords=gw1000+wifi+gateway&qid=1630618449&sprefix=gw1000%2Caps%2C646&sr=8-2-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUExMVBNMUI1TVlLWTRXJmVuY3J5cHRlZElkPUEwMDA0ODA0R1gyUUhJWlFNR0pSJmVuY3J5cHRlZEFkSWQ9QTA3MDEwNTczOVhYT1lESlVRTDNWJndpZGdldE5hbWU9c3BfYXRmJmFjdGlvbj1jbGlja1JlZGlyZWN0JmRvTm90TG9nQ2xpY2s9dHJ1ZQ==
https://www.amazon.com/ECOWITT-Gateway-Temperature-Humidity-Pressure/dp/B07JLRFG24/ref=sr_1_2_sspa?crid=26R3CDJOTDDY1&dchild=1&keywords=gw1000+wifi+gateway&qid=1630618449&sprefix=gw1000%2Caps%2C646&sr=8-2-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUExMVBNMUI1TVlLWTRXJmVuY3J5cHRlZElkPUEwMDA0ODA0R1gyUUhJWlFNR0pSJmVuY3J5cHRlZEFkSWQ9QTA3MDEwNTczOVhYT1lESlVRTDNWJndpZGdldE5hbWU9c3BfYXRmJmFjdGlvbj1jbGlja1JlZGlyZWN0JmRvTm90TG9nQ2xpY2s9dHJ1ZQ==

Page 211

Figure 106 WS View Setup for GS1000

The corresponding setup with mcsMQTT is on the Local Page, GW1000 Tab. See Figure 107. The

defaults are 127.0.0.1 to indicate single NIC and port 8080. If those are acceptable then the only setting

needed to the radio to connect to GW1000.

Page 212

Figure 107 GW1000 mcsMQTT Setup

When both are setup then the GW1000 will be providing updates at the interval that was setup,

mcsMQTT will populate the Association Tab, it will create HS devices and features for each sensor

reading and will update these as new data has been received. An example is shown in Figure 108.

Page 213

The connection to GW1000 can be enabled and disabled with radio connection. It is also possible to

have mcsMQTT monitor the connection and if no data received for the specified timeout, then

mcsMQTT will establish a new connection.

The Device name being used, and the pseudo-MQTT Topic is the passkey that is contained in the

GW1000 data stream. If other stations are providing data, then it becomes easy to distinguish one from

the other.

Figure 108 GW1000 Ecowitt/Ambient Sensors Viewed by HS

Page 214

11.8 Epson Projector ESC/VP.net
Epson produces a family of projectors that are network connected and an API

https://files.support.epson.com/pdf/pl600p/pl600pcm.pdf that can be used to provide control

and status. Some detailed integration information is also available at

https://www.epson.eu/en_EU/faq/KA-01...ents?loc=en-us

mcsMQTT provides an integration to the projector with HS3 and HS4. The setup starts with the Local

Page, Epson Tab where the network address of the projector(s) is(are) entered along with the polling

interval that should be used. See Figure 109. Status information from the projector is only provided

upon request. This request is issued by the plugin following a command that changes a parameter and

on the polling interval.

Epson does report events that the projector has been externally commanded such as from a remote.

mcsMQTT imitates a polling cycle when the IMEVENT message is received.

The connection to the projector is monitored. If it is lost for any reason then the plugin will attempt to

reestablish it. Once establish again it will send the required ESP/V21.net message to imitate

communication on the new connection.

Figure 109 Epson Projector Setup

When the Epson network address is entered a default HS Device and set of Features will be added such

as shown in Figure 110. User control from the HS Devices page or from HS Events can be used to

command the projector. Status will be updated for each Feature based upon the response received

from the projector.

https://files.support.epson.com/pdf/pl600p/pl600pcm.pdf
https://www.epson.eu/en_EU/faq/KA-01646/contents?loc=en-us

Page 215

Figure 110 Epson Project Default HS Device and Features

While it is likely that the default set of projector properties will be sufficient for any user, the API does

provide other information that could be of interest. To include another property from the projector,

then start with the Edit Tab or the MQTT Page and create a Sub Topic that looks like the other Epson

Topics, but ends with the API parameter that is being added. In Figure 111 is an example of a API

parameter “NEW” which is not a real parameter, but is being used for illustration. A real property

example is “AUTOKEYSTONE”.

Once the Epson/127.0.0.1:NEW is entered, mcsMQTT will create a HS Device Feature (4228) and provide

a table where other specifications can be entered. Since NEW is a parameter that can be controlled

from HS, the Publish topic text box needs to be completed as shown in Figure 111. The Control/Status

UI needs to be completed so the plugin knows the nature of the data that is being communicated.

If is is a hex digit-pair as is most common for the projector, then the type will be List and the subsequent

VSP defined on the Edit Tab. Look at predefined Aspect topic in the Edit tab for an example. If the

property is expecting something like ON/OFF as is used for PWR then it should be a Button. If it is an

integer such as is returned for Lamp Hours, then it is a Number.

The Grouping Ref should be reviewed and changed to assure this new Feature is grouped under the

Epson Device.

Page 216

Page 217

Figure 111 Augmenting Epson Command/Device List

The result of this is a new Feature such as shown in Figure 112. From this point the user is expected to

rename the Feature and add the appropriate icon. This is done from the HS Devices page in HS4 or

DeviceUtility page is HS3.

Figure 112 HS Epson Device Features after Augmentation

Page 218

11.9 HS and Plugin Monitoring with Enable, Disable and Restart Controls

mcsMQTT accumulates the CPU utilization and other performance measures over each 60 second time

interval and reports it in the pseudo-topic of HS. HS itself, any plugin, and any process name can be

selected for “A”ssociation with a HS Device Feature. Once associated the DeviceValue will show the

resource utilization such as percent CPU use over the prior minute. HS and plugin CPU monitors will

have control available to Enable, Disable, or Restart HS or the plugin. Plugins that are not running will

be shown as “Stopped” in HS with as DeviceValue of -1.

The selection of the desired measures is done from the Local Page, Resources Tab as shown in Figure

113. If other executable processors are to be monitored then the name of the process is also entered

on the same Tab. Use of Windows Task Manager or Linux Top may be helpful to correctly identify the

name of the process.

Figure 113 Computer Resource Monitor Selection

Page 219

Figure 114 HS Pseudo-Topic for Monitor and Control of HS and Plugins

A sample of the HS pseudo-topics is shown in Figure 114. A sample of the associated Device and

Features is shown in Figure 115. Most plugins have controls for Disable, Enable, Restart. HS and

mcsMQTT do not have the Enable control because they need to be running for these controls to be

used. Controls are only functional if mcsMQTT can access the HS web server over the LAN. Access is

available if HS Setup for Network has “No Password Required for Local (same subnet) Login” enabled or

the username:password has been setup on the MQTT Page, General Tab.

The HS/Plugin control devices will show the CPU use measurement. The other performance measures, if

enabled on the Local Page Resource Tab and “A”ssociated on the MQTT Page Association Tab will not

have any controls presented in HS. They can also be selected for History data collection.

Page 220

The Green vs. Yellow graphic reflects the status of the process in which a plugin or HS runs. A plugin

that is not running will show as Yellow. In the case of HS3 plugins that have multiple instances there will

be one process shared by all instances of the plugin. It will be shown in HS with a Device Feature for

each instance so each instance can be individually controlled, but only one process will be running. The

process will remain active as long as at least one of the instances has been enabled.

The percent utilization is also a reflection of the process. One that is not running will be shown in the

status as “Stopped”. For those that are running the DeviceValue will contain the percentage being used

over the last 60 second period.

Figure 115 HS Device Features to Monitor and Control HS and Plugins

The operation of the Enable and Disable controls is similar to the controls available on the HS Interfaces

or Plugins menu. They actually invoke the same operation as the controls on these pages. For the

Disable it is an orderly shutdown of the plugin.

The Restart control is implemented as a Disable control, monitor for the plugin/HS process to disappear

then invoke the enable action. In the case of mcsMQTT plugin a restart is achieve by internally doing an

orderly shutdown and then killing mcsMQTT process. HS will observe mcsMQTT has disappeared and

restart it. In the case of HS, the shutdown is done through the HS API. The HS restart is performed by a

shutdown, waiting for the HS process to disappear, and then launch HS.

mcsMQTT identifies the plugins by using the HSPI_ filenames in the HS folder. It then attempts to

correlate the filenames with the plugin names which are usually similar. For example, HSPI_SAMPLE.exe

has a plugin name of “Sample Plugin”. The filename is needed for CPU utilization monitoring. The

plugin name is needed for the Controls.

Unlike something like Windows Task Manager or Linux Top that attempt to show instantaneous CPU

utilization, the collection and reporting interval for mcsMQTT is 60 seconds. The intention is not to

capture short term spikes, but to capture steady state utilization.

The DeviceValue from any of these Device Features can be used as Event Triggers. The Controls can be

used in Event Actions. For example, and event can be setup if a plugin is using more than 25% of CPU

then Restart the plugin.

In the Linux case, HS provides tools to shutdown HS or to restart the computer. It does not provide a

tool to restart HS. The Restart control for HS provided by mcsMQTT can fill this gap.

Page 221

For those that keep historical trends then these Device Features can be selected for database storage in

mcsMQTT or other providers and then charting for CPU use can be produced.

11.10 Hunter Douglas PowerView Gen2 & Gen3
Hunter Douglas provides a family of approximately twenty shades that are networked interfaced

through a hub. The current hub firmware version is Gen3.

The URL Path for Powerview for access to shades and room information will be either “home” or “api”,

depending upon the equipment generation available. This is a setting on the Local Page, Shades Tab for

PowerView. The local Hub IP address and the update interval to refresh HS status is setup at the same

place as shown in Figure 116.

Figure 116 Hunter Douglas PowerView Setup

mcsMQTT provides the capability to moving shades to a specific position and reporting status of the

position. Some models have a tilt capability which is also controllable. Some models have a secondary

shade that can also be controlled. mcsMQTT will use the model information provided and create the

appropriate set of Features.

A battery status will also be created. If line power rather than battery power is being used then the

battery Feature can be removed by using the “a” column checkbox on the MQTT Page Association Tab

to remove the association with HS. A Device is created for each room setup in the Hunter Dougles

setup.

Figure 117 provides an illustration of the various Features setup within a room Device for the Gen3

equipment. Figure 118 shows the Room and Scene-Group Features for Gen2.

Page 222

Figure 117 Hunter Douglas PowerView Gen3 HS Features

Figure 118 Hunter Douglas PowerView Gen2 HS Features

The Local Page, Shades Tab contains the setup for the Hunter Douglas Gen3. The IP is the network IP

address of the hub. The polling rate is the periodic interval when status of shades position is queried.

The status is also queries at plugin startup. HS Devices are created when both the IP and polling setting

are setup.

Page 223

11.11 Command Terminal
The Command Tab provides a mechanism to periodically run executable programs that provide a

command line output. mcsMQTT will recognize the format of the output and convert it to JSON from

where a MQTT pseudo-topic is created using the JSON payload.

In general, it is up to the user to selected from the MQTT Page, Association Tab the pieces of

information that they desire to see in HS using the “a” checkbox.

At this time APC battery backup monitor apcaccess.exe is the application that has been implemented.

As interest exists others can be added to the plugin.

The Updater install will include APCMQTT.exe in the bin\mcsMQTT subfolder. This application is

intended to be run remotely such as in a RPi where the APC monitor has been connected. It will publish

MQTT messages on the Topic apcaccess/IP/status where IP is the IP of the host computer.

APCMQTT.exe is a native .NET/Windows application or a Mono/Linux application that should be started

at boot of the host computer. For Linux this is normally systemctl, but other options are available.

Examples of use of systemctl exist in this document. For Windows there are also multiple options to

start an application at boot time.

The apcassess application will output to the console data of a format similar to below. APCMQTT will

format this in JSON and deliver it as a MQTT message. mcsMQTT will run this application every five

minutes.

APC : 001,048,1088

DATE : Fri Dec 03 16:49:24 EST 1999

HOSTNAME : daughter

RELEASE : 3.7.2

CABLE : APC Cable 940-0024C

MODEL : APC Smart-UPS 600

UPSMODE : Stand Alone

UPSNAME : SU600

LINEV : 122.1 Volts

MAXLINEV : 123.3 Volts

MINLINEV : 122.1 Volts

LINEFREQ : 60.0 Hz

OUTPUTV : 122.1 Volts

LOADPCT : 32.7 Percent Load Capacity

BATTV : 26.6 Volts

BCHARGE : 095.0 Percent

MBATTCHG : 15 Percent

TIMELEFT : 19.0 Minutes

MINTIMEL : 3 Minutes

SENSE : Medium

DWAKE : 000 Seconds

DSHUTD : 020 Seconds

LOTRANS : 106.0 Volts

HITRANS : 129.0 Volts

RETPCT : 010.0 Percent

STATFLAG : 0x08 Status Flag

STATUS : ONLINE

ITEMP : 34.6 C Internal

ALARMDEL : Low Battery

LASTXFER : Unacceptable Utility Voltage Change

http://122.0.0.1/
http://123.0.0.3/
http://122.0.0.1/
http://60.0.0.0/
http://122.0.0.1/
http://32.0.0.7/
http://26.0.0.6/
http://19.0.0.0/
http://106.0.0.0/
http://129.0.0.0/
http://8.0.0.0/
http://34.0.0.6/

Page 224

SELFTEST : NO

STESTI : 336

DLOWBATT : 05 Minutes

DIPSW : 0x00 Dip Switch

REG1 : N/A

REG2 : N/A

REG3 : 0x00 Register 3

MANDATE : 03/30/95

SERIALNO : 13035861

BATTDATE : 05/05/98

NOMOUTV : 115.0

NOMBATTV : 24.0

HUMIDITY : N/A

AMBTEMP : N/A

EXTBATTS : N/A

BADBATTS : N/A

FIRMWARE : N/A

APCMODEL : 6TD

END APC : Fri Dec 03 16:49:25 EST 1999

APCMQTT.exe is expecting command line parameters of path to apcassess that is installed on the
host computer and the IP of the MQTT Broker that it should be using to facilitate the
communications. If the Broker is expecting a username and password then add it as the last
parameter in format username:password. The following are examples of the two cases:

mono /etc/apcupsd/APCMQTT.exe apcaccess 192.168.0.100
mono /etc/apcupsd/APCMQTT.exe apcaccess 192.168.0.100 un:pw

The apcaccess/status Topic will be received and available in mcsMQTT MQTT Page, Association Tab from

where selected items can be associated with HS Device and Features. Note that the raw data includes

formatting so it may be advantageous to remove the formatting so the data can be stored in

DeviceValue rather than DeviceString. Regular Expressions or Expressions on the Edit Tab of MQTT Page

can be defined to remove the formatting. For example, look at Section 6.2 case #2 to remove the suffix.

In these cases, the Control/Status UI should be selected to be a number rather than text.

http://115.0.0.0/
http://24.0.0.0/

Page 225

11.12 Speaker
KEF produces a line of smart speakers that accept multiple input sources and allow the speaker to

control transport of the media through the speaker. Models LS50 Wireless II, LSX II and LS60 are known

to use the same integration protocol that is implemented in this plugin.

Setup is simply identification of the IP of the speaker and the rate at which status will be updated as

shown in Figure 119.

Figure 119 KEF Speaker Setup

When contacted, HS Device and Features will be setup as shown in Figure 120. About half of the HS

Features will have controls and these include Power, Input Source, Volume, Mute, State, and Like

feedback. The status-only Features show information about the media that is being played.

Page 226

Figure 120 KEF HS Device and Features

Page 227

11.13 Jacuzzi Spa
Jazuzzi Hot Tubs utilize a serial connection with Prolink/Balboa protocol. The integration within the

plugin is done as part of the Serial integration capability on the Serial Tab of the Local Page as described

in Section 11.4 . An alternate setup is available on this Spa Tab as shown in Figure 121, but the

functionality is the same.

Figure 121 Jacuzzi Hot Tub (alternate setup)

Page 228

11.14 Gecko In-Touch Spa

Gecko In-Touch spas support a network interface. A Python library is available to communicate with it

and this library is being used by the plugin to perform the HS integration. The library is installed from

the command line/terminal using command

pip install geckolib

The library supports auto-discovery of the units as long as they are on the same subnet as HS. If not,

then the IP needs to be explicitly specified in the setup shown in Figure 122.

The plugin needs to know where the Python executable is located. In some installs it is placed on the

PATH environment, but not all so it is an explicit entry in the setup.

There is not data pushed from Gecko so data must be polled periodically. A status request is also sent

after every command sent to the unit.

HS Device and Features are created upon initial connection. The connection can be disabled and

reenabled to control the communications.

Figure 122 Gecko In-Touch Spa Setup

Page 229

Figure 123 Gecko In-Touch HS Device and Features

Page 230

11.15 Roborock Vacuum
Roborock vacuums support a WiFi interface that is used to configure the device using the Xiaomi

smartphone App. A Python library has been developed https://python-

miio.readthedocs.io/en/latest/index.html that implements a local control of the robot vacuum.

mcsMQTT uses this library to perform the integration.

Tthe Python library that can be installed from the command line with

pip install python-miio

The install includes a step where the Python is compiled into an executable that is placed in the \Scripts

subfolder under python.exe. On my first install on my newer computer there was a failure due to lack of

Visual Studio C++ Version 13+ Build Tools which can be downloaded

from https://visualstudio.microsoft.com/v...p-build-tools/ After the download the installer option for

desktop tools need to be selected to actually install them.

When python-miio completes successfully there are two programs of interest that will be in Python's

\Script subfolder. As an example

C:\Users\mcsSo\AppData\Local\Programs\Python\Python313\Scripts\mirobo.exe

C:\Users\mcsSo\AppData\Local\Programs\Python\Python313\Scripts\miiocli.exe

From a command prompt run the second one (miiocli.exe) with parameter cloud. It will prompt for

username and password for your Xiaomi account and return the IP and the Access Token for each

Roborock vacuum. This will be the only time that the Could server is used. Everything is local in the

actual integration.

cd C:\Users\mcsSo\AppData\Local\Programs\Python\Python313\Scripts

miiocli cloud list

Username: xxx

Password: xxx

== Anthem (Fully charged) ==

 Model: roborock.vacuum.s5

 Token: 6f48...546a

 IP: 192.168.0.176 (mac: 40:...:E1)

 DID: 117...116

 Locale: us

== North Bend (Fully charged) ==

 Model: roborock.vacuum.s5

 Token: 445a...4773

 IP: 192.168.0.75 (mac: 50...20)

 DID: 262...111

 Locale: us

https://python-miio.readthedocs.io/en/latest/index.html
https://python-miio.readthedocs.io/en/latest/index.html
https://visualstudio.microsoft.com/visual-cpp-build-tools/

Page 231

The IP and Access Token is entered on the Local Page, Roborock Tab as shown in Figure 124. Other

entries are path to mirobo.exe, polling rate and radio to enable the integration. The polling rate is for

general status. There are also consumables, timers, and history that are down at longer intervals that

are a multiple of the base polling rate.

Figure 124 Roborock Setup

When the "Connect to ..." radio enables the integration, the HS Device and Features will be created for

each vacuum as shown in Figure 125.

Figure 125 Roborock HS Device and Features

Page 232

Scheduling is setup with timers. Timers can be defined from the Roborock Tab as shown in Figure 126.

The example below is a 8 AM schedule 4 days of the week. When testing with my vacuum I discovered

that the cron parameter is not correctly parsed and this prevents the ability to define a timer from HS. I

did not attempt to define a schedule with the smartphone App.

When I searched for cron usage I found a problem report on Github with author not interested

Figure 126 Roborock Timer Specification

There is a checkbox to "Include Timer Functionality". When checked it will create HS Features for nine

timers and will include the polling of timer status. The docs show example of timer info as below. I do

not get this on mine, but I have no scheduling setup.

Timer #0, id 1488667794112 (ts: 2017-03-04 23:49:54.111999)

49 22 * * 6

At 14:49 every Saturday

Timer #1, id 1488667777661 (ts: 2017-03-04 23:49:37.661000)

49 21 * * 3,4,5,6

At 13:49 every Wednesday, Thursday, Friday and Saturday

Page 233

The created Features have controls to enable and disable created timers. Status such as "At 14:49 every

Saturday" will be shown for the timer when enabled.

Figure 127 Roborock Timer HS Features

Page 234

11.16 TP-Link Kasa/Tapo Plugs, Lights, Switches etc.

TP-Link provides a variety of smart products that are intended for control from their smartphone App.

They can, however, be controlled locally using a reverse-engineered API. It appears the effort at

 https://github.com/python-kasa/python-kasa is the most complete and supported. This functionality

has been integrated into mcsMQTT.

The documented list of supported devices as of the start of 2025 is

Supported Kasa devices

• Plugs: EP10, EP251, HS1002, HS103, HS105, HS110, KP100, KP105, KP115, KP125, KP125M1,

KP401

• Power Strips: EP40, EP40M1, HS107, HS300, KP200, KP303, KP400

• Wall Switches: ES20M, HS2002, HS210, HS2202, KP405, KS200, KS200M, KS2051, KS220,

KS220M, KS2251, KS230, KS2401

• Bulbs: KL110, KL120, KL125, KL130, KL135, KL50, KL60, LB110

• Light Strips: KL400L5, KL420L5, KL430

• Hubs: KH1001

• Hub-Connected Devices3: KE1001

Supported Tapo1 devices

• Plugs: P100, P110, P110M, P115, P125M, P135, TP15

• Power Strips: P210M, P300, P304M, P306, TP25

• Wall Switches: S210, S220, S500D, S505, S505D

• Bulbs: L510B, L510E, L530E, L630

• Light Strips: L900-10, L900-5, L920-5, L930-5

• Cameras: C100, C210, C220, C225, C325WB, C520WS, C720, D230, TC65, TC70

• Hubs: H100, H200

• Hub-Connected Devices3: S200B, S200D, T100, T110, T300, T310, T315

• Vacuums: RV20 Max Plus

There are two categories of products. The original (legacy) products use network port 9999 and the

current products use port 80 with a higher security consideration. While the cloud is not needed for

https://github.com/python-kasa/python-kasa
https://github.com/python-kasa/python-kasa#user-content-fn-1-80ab73f655f8d24461a284cfcbda199f
https://github.com/python-kasa/python-kasa#user-content-fn-2-80ab73f655f8d24461a284cfcbda199f
https://github.com/python-kasa/python-kasa#user-content-fn-1-80ab73f655f8d24461a284cfcbda199f
https://github.com/python-kasa/python-kasa#user-content-fn-1-80ab73f655f8d24461a284cfcbda199f
https://github.com/python-kasa/python-kasa#user-content-fn-2-80ab73f655f8d24461a284cfcbda199f
https://github.com/python-kasa/python-kasa#user-content-fn-2-80ab73f655f8d24461a284cfcbda199f
https://github.com/python-kasa/python-kasa#user-content-fn-1-80ab73f655f8d24461a284cfcbda199f
https://github.com/python-kasa/python-kasa#user-content-fn-1-80ab73f655f8d24461a284cfcbda199f
https://github.com/python-kasa/python-kasa#user-content-fn-1-80ab73f655f8d24461a284cfcbda199f
https://github.com/python-kasa/python-kasa#user-content-fn-1-80ab73f655f8d24461a284cfcbda199f
https://github.com/python-kasa/python-kasa#user-content-fn-3-80ab73f655f8d24461a284cfcbda199f
https://github.com/python-kasa/python-kasa#user-content-fn-1-80ab73f655f8d24461a284cfcbda199f
https://github.com/python-kasa/python-kasa#user-content-fn-1-80ab73f655f8d24461a284cfcbda199f
https://github.com/python-kasa/python-kasa#user-content-fn-3-80ab73f655f8d24461a284cfcbda199f

Page 235

control, it is needed to obtain the decryption information that is encoded in each device. Once

discovered cloud access is no longer needed.

Three encryption methods are used for current products. The method is not available using discovery,

but is likely KLAP. AES and XOR are the other two that appear to be used. The method mcsMQTT is

using is shown on the Local Page, KP-Link Tab. In the future this can be made a user option if necessary.

Current products appear to disclose their type information which is needed when accessing the device

to avoid the need to use discovery with each access. Legacy products do not. The plugin guesses the

legacy product types based upon textual information in the discovery. If necessary this can also be

made a user option.

The first step in the installation is to install the Python library referenced above. This is from the

command/terminal line with:

pip install python-kasa

The install will put the executable kasa.exe in the Python script path. mcsMQTT needs to know where

this located and provides a text box for entry. A typical entry will be like:

C:\Users\mcs1\AppData\Local\Programs\Python\Python311\Scripts\kasa.exe

The network subnet, Kasa cloud account email and password, status polling interval, and connection

controls are also provided in the setup as shown in Figure 128.

The network subnet is only needed if multiple NIC are installed and the TP-Link devices are not on the

same subnet as HS. If needed it will be in the format 192.168.0.255 where 255 is used as the wildcard.

Polling for status update is done, but does not need to be very frequent since each commanded changed

has a status response to indicate the new status. Perhaps every 5 or 10 minutes would be appropriate

unless there is a situation when other control outside of HS is being used.

Discovery is done at startup. It can also be done with button click if a new device has been added and

not yet known by HS.

The disconnect radio breaks/makes use of the Python library. It should only be needed when doing

diagnostics.

Page 236

Figure 128 TP-Link Setup

For each discovered TP-Link device, a HS Device and its Features will be created such as in shown in

Figure 129.

One bulb and one switch were used in the integration testing. While the structure to create HS Device

and Features is generalized based upon the discovery information, there may need to be future updates

to the plugin to handle other products.

TP-Link appears to use HSV model for color. The plugin does the conversion to represent the color in

RGB format that is used in the HS color selector control. It is possible to include individual slider controls

for hue and saturation if desired.

Presets were disclosed in the device being used for testing, but control of preset is not functional due to

a lack of syntax knowledge or a deficiency in the Python library. This may change in the future.

Page 237

Figure 129 TP-Link HS Device and Features

Page 238

11.17 Shelly Wall Display

The Shelly Wall Display is a hybrid Shelly product that implements a 3.5” display with Android features

and a small amperage relay for use as a switch or thermostat output under its Gen2 rpc protocol.

As of the start of 2025 the firmware is still in the beta cycle and has no official publication. The

integration is based upon a trial/error and Shelly question/response cycle and it is likely that future

firmware will provide additional functionality and could break some existing integration.

What is available with the Wall Display is a small screen that can be scrolled left-right to view a media

player, a thermostat, limited virtual devices, and some sensor measurements. See Figure 133

Figure 130 Wall Display Online status and Sensors HS Features

Page 239

Figure 131 Shelly Wall Display Thermostat HS Features

Figure 132 Shelly Wall Display Media HS Features

Page 240

Page 241

Page 242

Figure 133 Shelly Wall Display Panels Display

The mcsMQTT integration provides control of the media player for radio stations and uploaded media.

Video and photos looks to be future capabilities that are not yet supported by the beta firmware.

A thermostat panel can be added and the integration fully supports all aspects of the thermostat other

than control of the C vs. F temperature scale for which the beta firmware only supports the C display.

The HS Feature will show either C or F depending upon the HS setup for F or C.

Page 243

When a virtual button is defined on the Wall Display, it can be associated with an action using a browser

pointed to the IP of the Wall Display. The action is a URL that will be requested using HTTP GET. A

querystring can be added. See Figure 134.

For integration with HS two options are available. One is the JSON API defined by HS at

https://docs.homeseer.com/hspi/json-api. This reference assumes a remote cloud interface, but the

URL can be the local IP. Another choice it to use the same HS server, but

/mcsMQTT/MQTT?Topic=xxx?Payload=yyy to send a MQTT message in response to the virtual button

push. For example

http:/192.168.0.7/mcsMQTT/MQTT.html?Topic=ShellyWallDisplay-00082296CC85/rpc?Payload={"name":B1","count":2}

Figure 134 Wall Display Action Setup

https://docs.homeseer.com/hspi/json-api

Page 244

The media panel provides a set of transport controls that include both Radio and Media targets. In

general the two “Favorites” buttons apply to the Radio, but in many case the Radio will respond to other

buttons such as Stop.

Two selector controls are provided. One for media and one for radio. Selection of one or the other will

determine if radio or media is being played. The radio selector status will show the radio station being

played or N/A. The title and artist status will show the media that is being played.

Some of the controls are interlocked within the Wall Display so control of one could affect another.

Statuses will be updated in this situation.

Page 245

12 Cloud

12.1 URL

12.1.1 Overview
The URL tab provides access to internet sites and local widgets using HTTP/REST GET, HTTP/REST POST,

UDP, WebSocket/Webhook and TCP protocols. The returned data will be analyzed for XML or HTTP

Querystring formats and automatically converted to JSON. JSON is further decoded and others are

handled as text on the MQTT Page Association Tab. The setup options available are the URL to the site

being accessed, the protocol to use, polling rate, and if appropriate any changes to the protocol

headers. An example is shown in Figure 135.

The GET, POST and URL protocols support periodic polling of the site to obtain data updates. They can

also be used to send data from HS Device page, HS Event Actions or scripting. The UDP, WebSocket and

TCPIn setup a persistent socket connection so that event data can be reported through mcsMQTT to HS.

Received data is analyzed to assess if it is XML and if so, is converted to JSON for subsequent use. If it is

POST data using HTTP QueryString format (i.e., key value pairs separated with “&”) it is also converted

to JSON. Non-JSON data that does not fit these categories is treated as raw text.

If HTML data is retuned from the URL it will not be visible on the HS browser pages because the HTML

changes the rendering of an existing HTML page, but it does exist so extraction or other operations are

possible.

Page 246

-

Figure 135 Sites for polling JSON data via HTTP

GET protocol uses REST where the data being sent from mcsMQTT is placed in the URL as the

QueryString. POST protocol also uses REST with data being sent placed in the message body. UDP

places data being sent from HS in Datagrams. WS negotiates a persistent communication socket with

the URL setup. This is a listen-only protocol. TCPin is similar to WS, but the URL in this case is the NIC IP

and socket port that will be opened for listening. The external widget would need to be setup to use the

same if it desires to send data. The TCPIn URL can be defined as some port on 127.0.0.1 and in this case

mcsMQTT will pick the NIC being used. This implies that a single NIC exists on the computer to assure

know communication.

When the GET, POST or URL protocol is used then HS device is created through which the polling can be

stopped or started and text can be commanded to be sent. See Figure 136. When sending data through

a device the text box and Submit button are used. When sending data via Event Action the Send MQTT

Message Event Action is selected and the user entry for the action will be Topic=Text. The Topic will

start with URL/ and is visible in the Association tab as rows 12 through 16 of Figure 137 Pub text box. It

is of the format URL/URL:Control/Send. For example

URL/mcsSprinklers.com-8080:Control/Send=Text to Send

Page 247

In this example the port is separated from the address with dash rather than a colon so that confusion

does not exist with JSON key (colon delimit)

The GET and POST headers use default of the following. KeepAlive and Timeout are not actual headers

being transmit, but can be used to affect the connection persistence. Additional headers can be entered

in the last column of Figure 135 or the default headers can be changed by entering the header key and

value in the format key:value.

• Content-Type:application/x-www-form-urlencoded,

• Accept:*/*,

• User-Agent:mcsMQTT,

• Accept-Encoding:identity;q=1.0,*;q=0

• KeepAlive:True,

• Timeout:5000
.
Various authentication methods are employed across the web. mcsMQTT supports the most common
ones. The Authorization column provides a radio for selection of the method employed by the server at
the URL. mcsMQTT will either negotiate the authentication or it will include in the header the
authorization information for the Token and Bearer techniques.

REST GET and POST protocols usually have the URL prefixed with case-insensitive HTTP:// or HTTPS://.
UDP and TCPIn protocol does not have a prefix. Websocket/Webhook uses WS:// or WWS”// prefix. A
site that is expecting direct TCP commands can be setup with the GET protocol using “TCP://” prefix.

Data that is returned is expected to be in JSON format and decoded into individual keys such as shown
in Figure 137 . If XML it is converted to JSON. If not JSON then the entire message is treated as text or
number. The “A”ssociate checkbox on the Association tab can be used to map the returned data into HS
devices in the same manner that is used for associating MQTT data. If a transformation is needed such
as KPH to MPH values then the Edit tab Expression textbox can be used.

Page 248

Figure 136 REST and UDP HS Device Interface

Page 249

Figure 137 JSON Topics in Association Tab

12.1.2 URL Base and Endpoints
A server may have multiple endpoints that all share the same authentication methods. In this scenario

there should be one URL IP setup on the URL tab and that will be the IP of the base URL. For example, if

a server supports commands and status where the command URL is http://myServer/command and the

status URL is http://myServer/status then http://myServer would be the base IP used to establish the

link between the server and a HS device.

The HS Device will show a text box for parameters to be entered to route to this server. If the

parameter starts with “/” or with “?” then they will be appended to the IP to form the full URL that will

be sent to the server. For other cases, except the publist, the parameters will be considered to be the

data send as part of a POST request. GET requests have all their parameters on the querystring that will

start with “?”.

The publist needs to be used for the case where both the endpoint of the URL and the posted data need

to be sent. The publist is a text file located in the \data\mcsMQTT subfolder that contains both the full

URL and the data to be posted. It can be generated from the MQTT Page, Publist Tab or it can be done

with any text editor. Each line of the publist file is a text list that uses “=” to separate two parts of the

Page 250

line. The first part can be a local replacement variable name, a MQTT Topic, or a URL. The replacement

variable is a convenience so often used text can be defined once in the file and then applied multiple

times. A line that defines a replacement variable has the syntax of $$xxxx:=yyy where xxxx and yyy can

be any text strings. The Publist Tab editor of the MQTT Page has provisions of xxxx being 1, 2, 3 or 4; but

any text can be used for xxxx when making the file with a text editior. The definition of a local

replacement variable is an option that is not required.

 In this context of defining multiple URL endpoints, the left side of the “=” will be the URL if not a

replacement variable definition. Using the same example of http://myServer as above a publist to send

a command to turn device 123 on and 456 off could be:

URL/http://mcsServer/command={“device”:”123”,”state”:”on”}

URL/http://mcsServer/command={“device”:”456”,”state”:”off”}

The use of the publist is designated with the parameter in the HS Device control text box ending with

“.pub” such as “myServer.pub” where the file will reside at subfolder \data\mcsMQTT\myServer.pub.

The publist is also available as an event action. A publist can send using HTTP or MQTT protocols. The

user of HTTP is indicated with the line starting with “URL/”, “GET/”, ”POST/”, “PUT”. Other starting text

will result in a MQTT publish. “URL/” will use the method setup on the URL tab of the Cloud Page.

“GET/”, PUT” and ”POST/” will use the GET, PUT and POST methods respectively. For these HTTP

methods the specified URL must have the base URL defined on the Cloud Page, URL Tab. Using the same

example as above, if the POST method was to be explicitly requested rather than using the method

setup on the URL tab then the following would be used:

POST/http://mcsServer/command={“device”:”123”,”state”:”on”}

POST/http://mcsServer/command={“device”:”456”,”state”:”off”}

If the data in the publist contains a “=”, other than the one used to separate the Topic from the Paylaod,

then it should be escapted with a backslash such as “\=”. It will be sent without the backslash.

A third method to use the publist is for the case where periodic polling has been enabled on the Cloud

Page, URL tab for the server. If the endpoint entered ends with “.pub” then mcsMQTT will get the URL

information from the specified publist file.

In addition to the publist, a single endpoint can be controlled from a HS Device Feature that has been

associated with data received from the URL. For example, data received from xyz.com using the GET

method will show up in the Association table as URL/xyz.com.GET:xxx where xxx is JSON key. When

URL/xyz.com.GET:xxx is associated to HS then the Publish Topic can be defined to send data to that

endpoint in a manner similar that is done with publist. For this example, “PUT/http://xyz.com?id=1234”

could be entered for the Publish Topic and Payload Template setup with JSON format such as

{“move”:$$VALUE:}. This will send a PUT message to http://xyz.com with query parameter of id=1234

and body with JSON move key and value received from HS.

To send to a URL from a non-plugin device that has been associated the pub topic will contain the URL

that is setup on the URL Tab of the Cloud Page which will be typically a POST method. The publish

payload template will contain the post data and can contain replacement variables. For example, if URL

http://xyz.com/

Page 251

https://someserver.com was setup as the URL and message to be sent is JSON with ref number of HS

Device and its value, the following would be used

Publish Topic – URL/https://someserver.com or URL/someserver.com

Publish Payload Template – {“ref”:$$REF:,”value”:$$VALUE:}

12.1.3 oAuth2 Authentication
When the authentication method being used by the server is oAuth2 then a second URL is involved in

the authentication process. This URL as well as the data payload being sent for authentication is

entered on the two text boxes provided on the row where oAuth2 authentication is selected.

Typically, the authentication URL will contain /oauth such as https://api.flumewater.com/oauth/token.

The data payload is JSON and will contain the grant type, client and secret tokens and other information

required by the server. An example is:

{"grant_type": "password","client_id": "ABC","client_secret": "DEF","username":

"myEmail@emailserver.com","password": "xxx"}

A successful authentication will result in a token that can be used in subsequent access and information

about expiration and method to renew the token. This information will be stored in mcsMQTT.ini in an

encrypted format for use when later needed to access the base URL.

The user does not need to be concerned by the token except in cases where a failure is reported and

visible on the MQTT Page, Association Tab related to the ability to access the server. If access failure

then the authentication credentials need to be reviewed.

The token is typically formatted in a standard manner called JSON Web Token (JWT) and will contain

information that may be needed in subsequent endpoints of the URL. The API for the server will

document the endpoint requirements and the key that can be obtained from the JWT token to satisfy

those. They are retrieved by mcsMQTT using replacement variable $$JWT:(key):. For example, if

“user_id” is needed in the endpoint or the URL (or in the data payload) then can be references such as:

URL/https://myServer/user/$$JWT:(user_id):/status

While it should not be needed it is also possible to get access to the JWT token itself using $$JWT:. The

$$JWT replacement variable is only valid in the context of Cloud Page URLs that have been setup for

oAuth2 authentication method. If used elsewhere then an empty string will be returned. If the key is

not in the JWT token then an empty string will also be returned during the replacement.

mcsMQTT will monitor the expiration date of the authentication token on a daily basis and send a

request that the token be refreshed on the day before it expires. If for some reason mcsMQTT is not

able to refresh it then a new token can be requested when needed.

WebSocket and Webhook (TCP Listener)

https://someserver.com/

Page 252

Websocket and Webhook protocols open socket listeners on the HS computer at a specified port. When

a packet is received, it is converted to a MQTT pseudo-topic and payload that can be viewed on the

Association table and associated with HS Device Feature.

If there is special processing that is to be done or if a response to the received message is needed on the

same socket on which it was received then a script can be specified to provide the response text as

shown in Figure 138. If this processing is not needed then the script name does not need to be entered.

Figure 138 Listening Sockets Script Option

The script will be a Function with procedure name “Main”. It should expect two parameters. The first is

the URL that provided the packet of data and the second is the data in UTF8 string format that was

received.

The script will return the text that should be returned on the socket or a null string if no response is

desired.

As an example the following script will return the URL and received message if the message is “ECHO”

otherwise it will return a null string. mcsMQTT will return the text from the function in the first case on

the socket. It will return nothing in the second.

Function Main(parm as object)

 Dim URL as String = parm(0)

 Dim Data as String = parm(1)

 if Data = "ECHO" then

 Return URL & "=" & Data

 else

 Return ""

 end if

End Function

If the TCP Listener needs to support a secure SSL connection then a certificate needs to specified as

shown in Figure 138. If an unencrypted communication is being used then the SSL textbox should be left

blank. Generation of certificates is described in Section 10.2.3.

Page 253

12.2 Voice Monkey
Voice Monkey provides a means to communicate with Echo devices from HS. There is a setup to be

performed that involves:

1. registering with Voice Monkey,

2. enabling Voice Monkey skill in Alexa App, and

3. entering the skill’s access token and secret token on the mcsMQTT Cloud Page.

After setup then HS event actions are used to speak the Text, show Video or show HTML page.

Voice Monkey setup of access tokens is done on the same Tab as the Serial setup as shown in Figure

141. The tokens become available on the dashboard when a free Voice Monkey account is requested

via Voice Monkey - Sign In (https:// app.voicemonkey.io).

This account provides ability to link the Echo Voice Monkey skill with a user’s Amazon account. This skill

provides the ability to do Text-To-Speech to Echo devices as well as pictures, videos and HTML pages to

Echo Show devices.

The theory of operation is that a mapping is performed using Echo Routines between an Echo Device

and a corresponding Voice Monkey Routine. When the Voice Monkey Routine is run the Text-To-

Speech, video, image, or HTML page is delivered to the mapped Echo Device. The Voice Monkey

Routine is run when the Routine Id is used in mcsMQTT event action or MQTT message.

The Voice Monkey Routine to Echo Device mapping is done using the Alexa App run on IOS or Android.

Prior to this the Voice Monkey account, via a browser, is used to define the Routine names. The Routine

names can be defined all at once or can be done at anytime before the Routine name is used in the

mapping operation in the Alexa App.

Routines have a name and have an Id. The name is entered by the user in the format “Speak

EchoDevice” in both Voice Monkey and Alexa App. The Id is the same as the lower-case name, but with

a hyphen rather than a space (e.g., speak-kitchen). The Id is used in the mcsMQTT event action and

MQTT topic.

The process using Voice Monkey and browser will result in a set of Monkeys which are the same as the

Routine names as show in Figure 139.

Then naming convention is the same as is being used by Jon00 in his Voice Monkey integration with HS.

What is important is that whatever convention is used there must be a relationship setup between

name being used, the Echo Device, and the Routine name. Using the outlined naming convention

assures the relationships will exist.

The Voice Monkey name is referred to as a Monkey. In the API Version 2 format it is “device”. It is used

to form the Routine Id that is used by mcsMQTT in Event Actions and MQTT Topics and becomes the

trigger to cause Voice Monkey to route a payload to the Echo Device. One Name/Monkey/Device

defined in Voice Monkey can be used multiple times in Alexa App Routines so that multiple Echo Devices

can receive the same payload with a single Event Action or MQTT Topic.

https://app.voicemonkey.io/

Page 254

Figure 139 Voice Monkey Routines Seteup

In the Alexa App a mapping is done for each Echo Device with the result shown in Figure 140.

1. Start with Routines (from more menu in lower right)

2. Use + icon in upper right to add a new Routine

3. Enter into “Enter Routine Name” textbox “Speak <EchoDevice>” where <EchoDevice> is the

name given in Alexa to the Echo Device. When done use the “Next” prompt in upper right.

4. Click “When this happens”, on new screen select “Smart Home”. On next page there will be a

listing of the Routines that were setup previously in Voice Monkey browser. Select the Routine

name that is the same as the EchoDevice being mapped. The screen will echo “When ‘Speak

<EchoDevice> is pressed’”. Select Save.

Page 255

5. Click “Add Action”. Select Skills. From Your Skills select “Voice Monkey – Routine Triggers &

Text To Speech”. Screen will update with “Alexa will open Voice Monkey Voice Monkey –

Routine Triggers & Text To Speech. Select Next in upper right.

6. On bottom of screen “From “ click on “Choose Device”. Select the <EchoDevice> that is being

mapped. Click Save in upper right.

Figure 140 Alexa App Edit Routine for Voice Monkey

There is a special case Routine name “Speak All” that is used as the “When” part of the Routine

definition. There can be multiple Routine names that use “Speak All”. This has the effect of sending the

same text, video, image or HTML to multiple Echo Devices with a single Event Action or MQTT Topic.

There are two benefits. One is to reduce the size and labor of defining HS Event Actions where the

announcement is to be sent to all Echo Devices. The second is that there is a limit of 30 requests to

Voice Monkey per minute. If one has 30 Echo Devices, for example, then only one message can be sent

per minute. For 15 then it would be two, etc.

mcsMQTT maintains a queue of Voice Monkey requests that run in a separate thread. It manages the

queue so that no more than 25 requests to Voice Monkey are made in a rolling 55 second window. If

there is heavy request rate then it is possible that there will be a delay. If the throttling was not done

then Voice Monkey would enforce a 15-minute lockout if the 30 per minute was exceeded.

Routine Name

Speak (Den)

Add Action

Open Voice Monkey – Routine Triggers & Text To Speech

From

Echo Device Name (Den)

When

Voice Monkey Skill

Page 256

Figure 141 Voice Money Token Setup

The Voice Monkey event action defaults to Text. To show Video of HTML pages then JSON is used to

specify the details. Section 5.3 contains more details on the use of the event action.

When using Voice Monkey via MQTT message, the full capability of the Voice Monkey V2
Announcement API is exposed in the MQTT Payload. Refer to https://voicemonkey.io/docs for a
complete description of the announcement optioins. The MQTT Topic is “voicemonkey”. The options
consist of image", video", "video_repeat", "voice", "no_bg","media_width,
"media_height", "media_scaling", "media_align", and "media_radius with mandadory
keys device and text In the JSON payload.

https://voicemonkey.io/docs

Page 257

12.3 Yolink
YoLink has make available an integration API to interact with its cloud server much like their smartphone

apps is able to provide the UI for their devices. There is no API provided or hacked at this time to

interact directly with the YoLink hub. Only access via the YoLink server is available.

YoLink provides the API to support partner product integration or individual user integration. mcsMQTT

was submitted and approved to have a partner account access. This is the mechanism by which

mcsMQTT integrates with HS. As a partner, via mcsSolutions, mcsMQTT has visibility of the state of any

device identified for mcsMQTT management. It does not have visibility into a user’s account. In the

aggregate it has visibility into all the devices being integrated via mcsMQTT. This is typical of Internet-

based servers where data is collected, but the data is not associated with any individual.

The user has two options to identify the YoLink devices that mcsMQTT will integrate. One is to use the

list of devices that were setup on their account. This is done with the “Get All Devices …” button. The

other is to identify a YoLink device with its 32-character QR code. A smartphone QR scanner can provide

this. It is entered on the YoLink QR code table. mcsMQTT will inform the YoLink cloud server of this

device being integrated via mcsMQTT. The YoLink cloud server will acknowledge and, in the future, will

provide notification of any state changes fo the device. See Figure 142. In this figure it shows the first

four where the QR code was entered. The last row shows a device unique id which is signified by

encasing it in “[“ and “]”.

The YoLink hub devices are typically not returned in the list of devices in the YoLink account. If HS

monitoring of the hub is desired then it will be entered with the QR code.

Note also that there are two hubs specified in this setup. This is the scenario where one HS instance can

monitor YoLink devices at two residences or otherwise widely separated locations. In this scenario the

radio for multiple mcsMQTT should be selected on both mcsMQTT instances and the same QR devices

or account list set of devices should also be setup on both.

Page 258

Figure 142 YoLink Device QR Code Entry

When getting YoLink devices from a user’s account an oAuth2 process is invoked where the user logs

into the YoLink site and grants access to the devices in their account to the plugin. This screen is

presented when the “Get all Devices…” button is clicked and shown in Figure 143. Since this browser

page is being served by the YoLink server, mcsMQTT has no visibility into the user’s account other than

the listing of devices that are on the account that are subsequently delivered by the server once access

approval is granted. This is the same as when the QR codes for the devices are individually added. The

account that these devices were setup is not visible to mcsMQTT.

The oAuth2 process directs the browser to the YoLink server and then once approval has been granted

the YoLink server redirects the browser to an externally-visible internet site. The assumption being

made in the plugin implementation is that the redirection will be back to the same IP as where it started.

This means that use of the “Get all Devices…” button can only be done from a browser that is running on

the same computer as HS.

The YoLink server does not provide the identification of the YoLink Hub when the list of user devices is

delivered. If monitoring of its status from HS is desired, then the QR code of the Hub needs to be

explicitly specified in the QR table.

Page 259

Data in the table is a 32 character code. When manually entered from the QR code from the YoLink

device then it shows exactly as entered. Codes that are obtained from access grant to the user account

are shown encased in [and]. These are not the QR codes, but the unique ID’s of the device which has a

one to one relationship with the QR code.

Figure 143 YoLink oAuth2 Authoriztion Screen

The information that is received from the YoLink cloud server is available on the mcsMQTT MQTT Page,

Association tab such as is shown in Figure 145. mcsMQTT will automatically associate the likely features

of interest such as the state or battery level if the MQTT Page, Client Tab setting has been enabled for

auto-creation of known integrations. Figure 144 provides a typical example. The user can manually

associate any of the items shown in the Association table if additional visibility in HS Device Features is

desired. This is done using the “A”ssociate column checkbox. This will be on the /report topic.

Manual association also applies to new widgets that YoLink sells and have not yet been recognized by

mcsMQTT. In this case the user can manually associate the widget for HS monitor and control and not

need to wait for a future plugin update.

Page 260

Figure 144 Auto-created YoLink Device and Features

Figure 145 YoLink Report Data

Page 261

12.4 Geofence
The Geofence settings are used in conjunction with the smartphone tracking that is provided by the

OwnTracks or NextTracks App. The setup and use of Owntracks for purpose of setting up a geofence is

described in Section 14.

The location setup in HS Settings is always available as the center of a geofence. As many other

locations can be setup as desired. For example, multiple work locations, a friend’s location, etc. can be

defined such as shown in Figure 146.

Figure 146 Geofence Locations Setup

When position updates from Owntracks is received mcsMQTT will calculate the distance from each

geofence location and determine if the position is inside or outside the geofence.

The geofence boundary that is setup will determine the parameters for the here-away logic. A phone

moving toward a location that is identified as a geofence location will show here status if within 80% of

boundary distance. A phone that is moving away will show away status when it exceeds 120% of the

boundary distance. The hysteresis minimizes status toggling as the boundary is being traversed.

The geofence distance and the distance displayed with the Owntracks MQTT topics will be based upon

the HS setting for use of English vs. Metric units. It will be either feet or meters.

Page 262

12.5 Sense Energy
Sense Energy provides a device that measures electricity utilization and then based upon patterns it tries

to determine specific appliances that are using the energy at any given point in time. The data that is

collected is sent to the Sense cloud server for collection and analysis. There is not local access to the

data that has been published.

When a Sense device is obtained there is a process to setup an account that consists of an email and

password. To access the data via their App or via mcsMQTT the login credentials are needed. The API

for accessing the Sense cloud server account is not published but has been reversed engineered and

implementation provided for powershell, nodejs and Python. mcsMQTT is a .NET implementation based

upon information that is on the internet from other implementations.

There are three main capabilities provided. The primary is to make available the real time energy

consumption of each device identified by Sense. This can be seen on the Association Table of Figure 149

and HS Devices of Figure 148. The second is to provide a graphical display of the energy consumed by

each device over day, week, month and year timespans. Clicking on the MQTT Page, Association Tab,

Payload column value for the sense/realtime/… topic of interest will produce the popup chart, but only

if the additional download has been requested on the Sense setup of Figure 147. The third is to provide

access for HS visibility to other data related to status of the Sense algorithm to identify devices, a

timeline of events for specific devices turning off and on with chart display shown in Figure 150, and the

accounting of device properties maintained by Sense Energy.

mcsMQTT will setup a websocket to receive realtime data. Fast polling places greater burden on the

Sense server and HS/mcsMQTT. Default polling rate is every minute (60000 milliseconds). The polling is

for realtime data. If the user selects Devices, Status or Timeline then it will be polled at the rate

specified by user on the Cloud Page Sense tab as shown in Figure 147, but no faster than every minute

The realtime data feed provides energy utilization of each Sense-identified device and the total. For

each of these a HS Device Feature will be created and updated as shown in Figure 148.

Page 263

Figure 147 Sense Energy Setup

Figure 148 Sense Energy HS Devices and Features

Page 264

Figure 149 Sense Energy Topic Endpoints

Figure 150 Sense Energy Trend Chart

Page 265

12.6 Hubspace

Hubspace is a brand that shares a common smartphone App for outlets, locks, lights, fans and other

products distributed through Home Depot. A snapshot from the HD marketing page is shown in Figure

151.

Figure 151 Hubspace Products

The products are setup by first creating a Hubspace account and using the QR codes provided with each

instance of the product that is being installed. Bluetooth is used for initial setup of the product to gain

access to the WiFi network and then WiFi is used to communicate with the Hubspace cloud server.

A Python library is available with instructions and repository at https://github.com/jan-leila/hubspace-

py and https://pypi.org/project/paho-mqtt/#installation It is most easily installed from the command

line / terminal window using PIP with the command

pip install hubspace

pip install paho-mqtt

If Python3 and PIP are not yet installed on the Homeseer computer they first need to be installed. Use

Google for guidance on installing them on the OS that is hosting Homeseer. After installation, the folder

where python.exe needs to be identified as it varies. There will also be a \Scripts subfolder that

normally a subfolder of where python.exe is located. HubspaceRequest.py will be copied to the \Scripts

subfolder.

During installation of Python, the PATH environment variable is normally updated with path to python

and the scripts subfolder. It will likely be necessary to have these definitions in PATH.

The integration of this library with Homeseer is done with the Python script HubspaceRequest.py that is

available in the mcsMQTT download package and originally installed at subfolder \bin\mcsMQTT. It will

not be run from this location, but is moved to the \Scripts subfolder of python install.

https://github.com/jan-leila/hubspace-py
https://github.com/jan-leila/hubspace-py
https://pypi.org/project/paho-mqtt/#installation

Page 266

The mcsMQTT setup for Hubspace integration is on the Cloud Page, Hubspace Tab as in Figure 152

Note the full path to python.exe and the Scripts folder in the setup. Also needed are the email and

password to the account that was setup with Hubspace. Data is polled for status updates to handle the

local control being synced with HS. Provision is also provided to disconnect the connection with the

cloud server. This disconnection will also result in the Python script HubspaceRequest.py being

terminated. HubspacaceRequest.py is managed by mcsMQTT and run when the setup is complete and

not disconnected.

Figure 152 Hubspace Integration Setup

After everything is put in place it would be good to run HubspaceRequest.py from console/terminal

window such as below after navigating to the Python \Scripts folder. In this example, 192.168.0.5 is the

MQTT Broker address. If no MQTT Broker has been setup then use 127.0.0.1 here and on the mcsMQTT

MQTT Page, Broker Tab. myEmail.com will be your Hubspace account email. myPW can be anything as

this test will not have success with connection to the cloud server. The test is to assure all the Python

components are installed correctly. If no error message on the console/terminal then likely the install is

good.

python hubspaceRequest.py myEmail.com myPW 192.168.0.5

At this time the integration supports the outlet and lightbulb. Others can be added in the future with

assistance from users of the other equipment. The mcsMQTT integration structure is setup to add

additional products with minimum difficulty.

Page 267

mcsMQTT will use two endpoints with the Hubspace server. One provides Meta data that describes the

characteristics of the product that exist on the account/server. The other provides the Attributes of the

products which includes the current state.

The data of interest is visible on the MQTT Page, Association Tab. This includes the Hubspace product

attributes and message feedback in communications between mcsMQTT and HubspaceRequest.py. The

Meta data is not shown in this table. A slice of this is shown in Figure 153. Beyond the setup of HS

Device Features other features of mcsMQTT, such as History data and charting, can be selected from

this page.

Figure 153 Hubspace Product Data as MQTT pseudo-Topics

The outlet is presented by the Hubspace server as two independent plugs. There is no single command

to control both simultaneously, but the HS linking capability can be used if the desire is to have both

plugs controlled together.

A feature is provided by mcsMQTT to allow an outlet to be always ON. At each polling interval

mcsMQTT will confirm it is ON and if not, it will command it to the ON state. The On/Off controls will

still be visible on the HS Devices page, but can be removed if desired using the Status/Graphics Tab of

the HS Devices Page.

To indicate that an outlet plug is be always ON, the PubTopic on the Association Tab will be changed so

that is indicates it is “on” rather than the actionId that is normally at the end. Using the example of HS

Feature 7823 shown in Figure 153, the Pub textbox will be changed

From: Hubspace/HStest_toggle outlet-2_3_872d485519a9fcde/3

To: Hubspace/HStest_toggle outlet-2_3_872d485519a9fcde/on

Page 268

HS Device and Features will be automatically created based upon the Meta data with example of outlet

and light in Figure 154. The Feature names are taken from the Meta data. They can be changed by the

user from the default names if desired. Renaming will not affect operation. Similarly, Floor, Room and

Device/Feature grouping can all be changed using the Devices page tools provided by HS.

Figure 154 Hubspace Auto-Created HS Device and Features

Page 269

12.7 Switchbot

12.7.1 Introduction
Switchbot provides a line of interfaces that are managed via their Cloud server or locally via Bluetooth.
This includes Bot, Curtain, Meter, Lock, Keypad, Keypad Touch, Motion Sensor, Contact Sensor, Ceiling
Light Pro, Plug Mini (US), Plug Mini (JP), Plug, Strip Light, Color Bulb, Indoor Cam, Pan/Tilt Cam, Robot
Vacuum Cleaner S1, Robot Vacuum Cleaner S1 Plus, Blind Tilt and more.

For those who want to use the Switchbot smart plugs and lights locally via WiFi without dependence on
a Cloud server, a mechanism exists with Over-The-Air change of the firmware. Section 20.13.2 describes
this process. Once changed, the integration described in this section via the Cloud server will no longer
be used.

12.7.2 Setup
To get started with Switchbot, one first needs to install the Switchbot App on their mobile device to get
access to the token and secret keys. This process is described in GitHub -
OpenWonderLabs/SwitchBotAPI: SwitchBot Open API Documents for the Version 1.1 integration
performed by mcsMQTT. These keys are obtained from the App using the steps:

Go to Profile > Preference b) Tap App Version 10 times. Developer Options will show up

c) Tap Developer Options d) Tap Get Token

The tokens are then entered on the mcsMQTT Cloud Page, Switchbot Tab as shown in Figure 155. Two

access methods to the cloud are available. mcsMQTT will poll status updates at the rate specified by the

user in the setup. If the user has a means to accept data pushed by the Switchbot Cloud server then the

WAN-visible URL is entered in the setup. This URL will be used by mcsMQTT to setup a webhook listener

and inform the Switchbot server of its presence.

A setup provision also exists to disconnect from the Switchbot server and reconnect while still maintain

all previous setup.

https://github.com/OpenWonderLabs/SwitchBotAPI
https://github.com/OpenWonderLabs/SwitchBotAPI

Page 270

Figure 155 Switchbot Setup

mcsMQTT will ask the Switchbox server for the list of devices that have been setup on the user account.

It will then create HS Device and Features such as shown in Figure 157. The number of Features per

Device will depend upon the Auto-create Verbosity setting in Figure 155. This setting can be toggled

and will apply to all Switchbot Devices.

For those that want to use local Bluetooth control and status then the Bluetooth setup is needed on the

Local Page, Bluetooth Tab for the Open MQTT Gateway. See Section 11.6.1. Bluetooth status updates

will occur automatically. Bluetooth control vs. Cloud control is a user selection on the Cloud Page,

Switchbot Tab as shown in Figure 156.

Figure 156 Switchbot Local vs. Cloud Control

Page 271

The control algorithm implemented is to first try with the Bluetooth gateway that shows the strongest

Bluetooth signal (rssi). Seven seconds are allocated to a response to the command with the expected

new status. Next attempt will be with the Bluetooth gateway that had the last contact to the Switchbot

device. If after seven seconds the expected status update is not received then the command will be

delivered to the Switchbot cloud server for execution through the local Switchbot hub.

12.7.3 Switchbot Devices
When a Switchbot item is controlled from HS via Devices, Event, or Script/CAPI, mcsMQTT will deliver

the request with a retry if necessary. The Switchbot response will include and updated status and HS

Feature will be updated based upon this status. mcsMQTT will then poll to get status from Switchbot

server to confirm. The HS Feature status will be updated again. No update occurs unless the response

status indicates a success status (100). If the Webhook has been setup the state change will also be

reported via the Webhook and Feature status updated.

The API does not document the status response content for each Switchbot device. The only device

available for initial development that can be controlled is the Bot. Other devices that users may have

will need the debug output to include status reporting for that device. As a note, the US Smart plug was

converted to Tasmota, but still shows in the Switchbot account. It, however, could not connect to the

Hub so could not be controlled by the Cloud integration (or smartphone App).

Status updates are polled and optionally delivered via Webhook. Polling limit of the Switchbot server is

1000 requests per day. mcsMQTT enforces a limit of around 900 with the polling interval minimum of

100000. The status of the number of requests and if the daily limit has been exceeded is shown in the

Server Disconnect label such as is shown in Figure 155. While the user enters a desired polling rate that

would cover the interval for a single device, mcsMQTT will increase the interval by the number of non-

Hub devices that the user has their account. This means that if a user has 10 non-Hub devices the

polling interval will be increased by a factor of 10 so the daily limit is not exceeded.

Page 272

Figure 157 Sample Switchbot Devices and Features

User tweaking of the setup is available on the MQTT Page, Association Tab and Edit Tab such as shown

in Figure 158. This will allow HS-properties edit via Edit tab and show the mechanism by which the

devices can be accessed via MQTT Topic/Payload orientation.

Page 273

Figure 158 Switchbot Pseudo-Topics

12.7.4 Switchbot Infra-Red
Switchbot hub supports learning of IR code for custom devices and from a library of standard devices

such as TV, DVR, Fan, etc. Each appliance that has been learned will be reflected in HS as a Device and

Feature with a dropdown selector control. Control is also possible through standard event action and

scripting methods. See Figure 159.

Figure 159 Switchbot IR Appliance Devices

Page 274

For the standard IR appliances known by Switchbot, mcsMQTT will populate the selector control with

the available IR-code names. These are the only ones that the Switchbot hub will recognize and respond

by blasting an IR pulse sequence.

For the custom IR appliances, the user needs to define the IR-code names that were setup on their

account via the Switchbot App. The names are maintained as Value Status Pairs (VSP). They can be

entered from the HS Devices Page, click on the IR Feature, Status/Graphics Tab, New Single Value, Edit

icon, enter Label column Status such as “Close” in Figure 160.

Figure 160 Switchbot Custom IR Code Definition

This can also be done on the MQTT Page, Edit Tab/Popup for the selected IR Topic as shown in Figure

161. The syntax in the Add/Edit textbox is Name=number;Name for a single entry or to put all entries in

at once use comma between each name such as “-,On,Off,Close,Open,Tilt” to define six IR Codes.

Before doing this make certain the Max Number of VSP textbox will account for all codes being entered.

Page 275

Figure 161 Switchbot Custom IR Codes Setup on Edit Tab

For both custom and standard IR Appliances it is possible to change between using Buttons or a Selector

for the HS Devices control. The default is Selector. The Selector is identified on the Edit Tab with a HS

Device Control/Status UI of List. To change the list to a set of Buttons on the HS Devices Page for control

then select the Button radio option.

Figure 162 Switchbot IR Control via Buttons

Page 276

In the case of the TV, IPTV, and Set Top Box the IR control contains two Features. One for discrete

control and one for channel number selection. By default, the channel number selection is shown to the

user as a number text box into which the desire channel is entered.

This default can be changed to a list selector where the list of favorite channels is available. It could also

be done with individual button for each channel favorite. This change is done on the Edit Tab with the

Control/Status UI for Button vs. List and the VSP text box where the list of channels is entered such as

“4,5,11,13,121,118” without quotes. This process is similar to what is shown in Figure 161 and Figure

162. Note that this needs to be done via Edit Tab and cannot be done directly in HS Devices

Status/Graphics. The icons, however, will be done on the Status/Graphics page if desired.

Page 277

12.8 Rheem EcoNet
Rheem EcoNet is a cloud integration of Rheem user equipment. Access to the cloud server is via a

username and password. This provides ability to login and obtain credentials for subsequent access to

the EcoNet server. This is not a public API, but one that has been reverse engineered so it is possible

that it could change in the future without notice. The mcsMQTT integration is based upon the work

contained in GitHub https://github.com/w1ll1am23/pyeconet/find/master) .

The mcsMQTT Cloud Page, EcoNet tab provides the ability to enter username and password as well as

disconnect when desired. This is shown in Figure 163. This login provides the ability to obtain a user

token and an account id that are used in subsequent communications. These secret credentials are not

made visible by mcsMQTT except when the option for the additional download is selected via checkbox.

For normal updates from the EcoNet server the additional downloads are not needed. The additional

data may be useful to get specific identification information if trying to later publish setpoints, modes,

or other control from HS to the equipment.

Figure 163 Rheem EcoNet Setup

 The observation is that reports from EcoNet server for normal status are infrequent with an update rate

of perhaps every couple of hours. It was also observed that after the @CONNECTED message was

delivered with a “false” status that no subsequent messages were received. The assumption in this case

is the local equipment has gone offline and not visible to the EcoNet server.

EcoNet server provides data from two sources. Pulled data includes the list equipment, it’s properties

and status. This pull request is done on startup and when a setup change is made. Pushed data is sent

https://github.com/w1ll1am23/pyeconet/find/master

Page 278

encrypted as status changes. mcsMQTT consolidates the two sources into a single set of messages used

to create and then update HS Device Features. A manual pull of data can be done with the button

shown in Figure 163. While it should not be necessary, it is also possible to schedule periodic pulling of

the data as shown on the same figure where a 0 value is now visible. Perhaps every hour (3600000

milliseconds) or longer would be reasonable intervals if desired.

During development there were cases where connection was lost with the push/MQTT communication

channel and graceful reconnection was not always possible. To overcome the difficulty the EcoNet

communication with the EcoNet Cloud Server was moved to a separate process (EcoNet.exe) and the

MQTT on the LAN used to exchange information with this EcoNet process. The Topic used is

EcoNet/message with JSON payload. The data from EcoNet server is communicated on the LAN using

the EcoNet/Location Topic. Commands to change the equipment use the topic /user/+/device/desired

where + is the location identifier obtained via the login process.

Figure 164 EcoNet MQTT Report Snapshot on Association Tab

HS Device and Features are created based upon the Location Equipuipment information provided by

EcoNet Server. The only equipment available during test was Water Heater so that is all that is auto-

created. Updates to mcsMQTT can be made if access to other equipment is made possible.

For the Water Heater the HA user interface is shown in Figure 165.

During evaluation the WiFi SIGNAL update occurred as the signal strength changed by 1 unit at a rate of

once or twice per hour. This will be dependent upon local WiFi characteristics. As a control is issued,

Page 279

such as change of Setpoint, the status is immediately updated and will usually include multiple

properties such as ScheduleResume being shown with “Resume” to reflect that the schedule has been

superseded and Resume control is now active to restore operation to the schedule.

Figure 165 EcoNet Water Heater Device and Features

Page 280

12.9 Flume Water
Flume provides a Personal API that is well documented at Flume Personal API | Flume Help Center

(flumewater.com) . This enables a user to interact with the Flume Cloud server to get information

similar to that available via their smartphone App. Interaction with the API can be setup from the

mcsMQTT Cloud Page, URL Tab.

There are two Servers provided by Flume. One for general information. The other for water usage

queries. Two IP’s are setup on the URL tab to handle both servers. oAuth2 authentication is used. The

oAuth2 server for Flume is https://api.flumewater.com/oauth/token. The oAuth2 payload looks like:

{"grant_type": "password","client_id": "XXXXX","client_secret": "YYYYY","username":

"myemail@gmail.com","password": "mypassword"}

Email and password are the ones used for the Flume account and App. The XXXXX and YYYYY are

obtained from the Get Tokens link at Introduction (readme.io). User login to this site is needed.

Note that endpoints that will be used for water usage are using POST while those for general

information are using GET.

Polling was setup at one minute and five-minute intervals with the endpoints contained in the

\data\mcsMQTT\FlumeTech.pub and \data\mcsMQTT\FlumeWater.pub. If different endpoints should

https://help.flumewater.com/en/articles/3108017-flume-personal-api
https://help.flumewater.com/en/articles/3108017-flume-personal-api
https://flumetech.readme.io/reference/introduction#introduction

Page 281

be polled at different rates, then additional .pub files should be used and HS Events setup to Send MQTT

Publish message. If only one endpoint is to be sent then it can be put directly in the MQTT Send

Message action text box rather than creating a .pub file.

12.9.1 Water Use Queries
Once the tokens have been obtained and the oAuth2 authentication has been setup then one needs to

get the identification of the installed equipment. This is done with Fetch User’s Devices from the same

page where the token was obtained. Alternately device identification it can be obtained by entering

“/devices?user=false&location=false” in the Submit text box on the HS Devices page for the device

created for the flumewater URL.

The returned payload is JSON and the key of interest is “id” such as “id": "ZZZZZ". If done from the HS

Device page then it will be shown on the Association tab.

The device identification (ZZZZZ value) is used in the water utilization queries. These queries are most

easily setup and managed using a publist which is a structured file located in the HS subfolder

\data\mcsMQTT with a filename ending in “.pub”. See Section 12.1.2 for more information on the

publist use in this context.

It is possible to make a single request with multiple queries or multiple requests of a single query each.

The former is preferred to reduce overhead. The example below are three queries. The first gets the

water usage for the past minute. Th second for the current day and the third gets the usage for the

current month. Flume provide the options available for queries at Querying Samples (readme.io). Note

that the URL contains a replacement variable
$$PAYLOAD:(URL/api.flumewater.com/me.GET:data:*:type-1:device_id):

which could be changed to manually enter the device_id rather than picking it up from the payload from

an earlier /devices query from flumewater.

An example query is shown below where the start of the period being requested is at the first second of

the bucket’s interval.

URL/https://api.flumetech.com/me/devices/$$PAYLOAD:(URL/api.flumewater

.com/me.GET:data:*:type-

1:device_id):/query={"queries":[{"request_id":"Now","bucket":"MIN","op

eration":"MAX","since_datetime":"$$YEAR:-$$MONTH:-$$DAY:

$$HOUR::$$MINUTE::00"},{"request_id":"Today","bucket":"DAY","operation

":"MAX","since_datetime":"$$YEAR:-$$MONTH:-$$DAY:

00:00:00"},{"request_id":"ThisMonth","bucket":"MON","operation":"MAX",

"since_datetime":"$$YEAR:-$$MONTH:-01 00:00:00"}]}

Another approach is to query from the start of the desired interval such as for the “Now” query where

the start is 60 seconds in the past. In this case inline expressions are used to compute 60 seconds in the

past and to format the date in the desired format.

{"request_id":"Now","bucket":"MIN","operation":"MAX","since_

datetime":"<<Format_DateTime("<<DateAdd("second",-60,Now)>>","yyyy-MM-

dd HH:mm:ss")>>"}

https://flumetech.readme.io/docs/querying-samples

Page 282

The returned data will be in the Association table. Note the use of “request_id” parameters in the

above queries. They will be part of the structure in the Association table to identify the utilization of

interest. This was done for Devices 126 and 128 in the example below.

12.9.2 Notifications
Notifications are obtained with the GET query to the /notifications endpoint. Flume returns a list of

notifications with the most recent first and older ones later. What is of interest is only the most recent

so the query is setup to return only one notification. The JSON returned payload contains a “type”

parameter that can be USAGE_ALERT, BUDGET, GENERAL, HEARTBEAT or BATTERY. The remainder of

the keys in the JSON payload then apply to this notification type. To provide unique HS devices for each

notification type this “type” key can be elevated for uniqueness after selecting type as an Associated

topic. This is done on the Edit tab as shown in Figure 166 below. Flume provides the notifications in a

JSON array. It does not matter which position in the array the notification is delivered so the elevated

key can be prefixed with “*:” to make the position a don’t-care.

Page 283

Figure 166 Elevate Flume JSON Key 'type' to Provide Uniqueness of Notifications

For usage alerts there is a message and the time the message was created and when last seen. It is

possible to create a HS device for each of the keys or as shown below the payloads can be combined

using the Expression textbox on the Edit tab for the Associated topic. For example the expression below

concatenates three strings to be stored in the HS DeviceString. Note the use of quotes in the expression

to assure each element that is being combined with “&” is a string.

"$$PAYLOAD:"&" created at "&"$$PAYLOAD:(

URL/api.flumewater.com/me.GET:data:*:type-1:created_datetime):"

Page 284

This figure also shows the Association of the battery where the status shows “high”. By default, this is

considered text by mcsMQTT so will have the text stored in DeviceString. To be able to trigger on the

status VSP can be used to map the text into a number to be stored in DeviceValue. The radio for

Control/Status UI is changed to Button (or List). “high” is the only state currently reported. When other

states are reported they will be added to the VSP and unique values assigned.

The above selections resulted in the following HS Devices page. It contains a submit control to manually

request data from an endpoint from each the flumetech and flumewater servers. These same controls

contain two buttons to manually control polling of the endpoints that are contained in the

FlumeWater.pub and FlumeTech.pub publication list files.

Page 285

Page 286

12.10 Emporia Energy Vue
Emporia Energy provides a cloud server from which real time energy usage can be obtained for each

circuit that has been installed for monitoring. Their site is at https://www.emporiaenergy.com/.

Figure 167 Emporia Hub and Circuit Clamps

Integration of their server with HS via mcsMQTT is started on the Cloud Page, URL Tab by entering the

Emporia cloud server URL https://api.emporiaenergy.com, the endpoint query

“/AppAPI?apiMethod=getDeviceListUsages&deviceGids={123456}&instant=$$UTCYEAR:-

$$UTCMONTH:-

$$UTCDAY:T$$UTCHOUR::$$UTCMINUTE::$$UTCSECOND:.0Z&scale=1MIN&energyUnit=KilowattHours”

and a polling rate as shown in Figure 168. The protocol is GET and the authorization is oAuth2. The red

text for deviceGids parameter is unique for each user. Getting this value will be discussed later in this

section.

The API for Emporia Vue has been reversed engineered and the company has indicated that an official

one will be published in 2022. Emporia uses the AWS servers. The login to these servers is with AWS’s

flavor of oAuth2. mcsMQTT utilizes an existing Python implementation of the cognito login to

accomplish the authentication. This is expected to change to a native .NET implementation when the

official API is published. There is no need to enter anything in the Cloud Page, URL Tab “oAuth2 URL and

Data Payload” textboxes as this is currently handled with the Python glue.

The Python implementation is available at https://pypi.org/project/pyemvue/. It is installed from a

command line with “pip install pyemvue”. In addition, a Python module was developed as glue logic

https://pypi.org/project/pyemvue/

Page 287

between mcsMQTT and pyemvue login. The AWSlogin folder and __main__.py file in this folder is

installed in the same location as pyemvue. The location will depend upon the computer. For a clean

install on Windows the path is “C:\Python37-32\Lib\site-packages”. AWSLogin that contains both the

folder and file is available at http://mcsSprinklers.com/AWSLogin.zip. Unzip while maintaining the

folder structure as shown in example below.

Also available at http://mcsSprinklers.com/AWSKeys.zip is template file for the Emporia account login

email and password. This file is placed in the \data\mcsMQTT folder and edited to provide the account

login information. This file will be updated by AWSLogin with a set of tokens after a successful login has

been accomplished. It will continue to be updated as tokens expire and new tokens need to be

obtained. This will occur typically on an hourly basis. No user action is need after then initial edit of the

template.

mcsMQTT will execute AWSlogin.py when it receives a 401 unauthorized result. The expected path of

Python is C:\Python37-32\python.exe. If this not the path on your computer then add a line

under the [General] section of \config\mcsMQTT.ini that looks like below with the red text

containing the path on your computer.

PythonPath= C:\Python37-32\python.exe

On a later RPi/Linux install additional steps were needed as the required cryptography libraries had to

be locally built from source because of Linux hardware variations. The following steps were used. Note

the third line below captures the interactive inputs for rust configuration.

sudo apt-get install python3-pip python-dev

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

2, arm-unknown-linux-gnueabihf , nightly, complete, Y, 1

sudo apt-get install libssl-dev

pip install pyemvue

The second issue on the Linux install is that during pyemvue install the python path environment was

not updated to include the path to this and dependent modules. To overcome this a bash script was

used that first set the environment variable and then executed the AWSlogin module. The script is

shown below. I called the script AWSlogin.sh and placed it in the /Data/mcsMQTT folder.

http://mcssprinklers.com/AWSLogin.zip
http://mcssprinklers.com/AWSKeys.zip

Page 288

#!/bin/bash

export PYTHONPATH=/home/mcs/.local/lib/python3.9/site-packages

/usr/bin/python3 $1 $2 $3

This script can be put anywhere and does need to be made executable (chmod AWSlogin.sh 755).
Something like /Data/mcsMQTT or /scripts seems like a reasonable place.

It needs to be edited to put the path where AWSlogin module was placed in the PYTHONPATH line. Note
that the PYTHONPATH environment is being explicitly stated here for whatever user is associated with
the shell execution. In my case it was not the logged-in user that was running HomeSeer. It would be
safer to add to existing PYTHONPATH rather than replacing, but I did not evaluate this approach. I found
Google reference to do this with "export PYTHONPATH=/home/mcs/.local/lib/python3.9/site-
packages:$PYTHONPATH.

It needs to be edited to put the path to python if not /usr/local/python3.

/Config/mcsMQTT.ini needs the PythonPath= xxx where xxx is the path to where this script was placed.
For example
Code:

PythonPath="/usr/local/HomeSeer/Data/mcsMQTT/AWSlogin.sh"

Figure 168 Emporia Vue mcsMQTT Setup

The polling endpoint setup has a scale parameter which can any of the following [1S, 1MIN, 1H, 1D,

1W, 1MON, 1Y]. 1MIN is a reasonable value. It means that Emporia will provide the KwH

measurement for data collected over the past one minute. In the setup of Figure 168 the polling rate is

shown as every 10 seconds. This means the data will be refreshed every 10 seconds for the amount of

energy used over the past 60 seconds.

mcsMQTT converts the KwH data received into Watts in the HS Device Features. It does this by using

the Expression text box of the Edit tab to use the appropriate conversion based upon the scale

parameter being used. This is all done automatically by mcsMQTT with no user action needed. If the

user changes the scale parameter, then mcsMQTT will change the conversion expression. For example,

a KwH reading that was taken with scale=1S will have an expression 3600*1000 to handle the

Page 289

conversion from hours to seconds and from killowatts to watts. For scale=1MIN the conversion is

60*1000, etc.

mcsMQTT automatically creates HS Device Features for the “:usage” JSON keys of the data from the

Emporia server. It gives the Feature the value of the “:name” JSON key. This is shown in Figure 169.

Emporia JSON payload is provided as arrays. This results in multiple rows on the mcsMQTT Association

table of the MQTT Page with similar data. It is possible to “A”ssociate other rows into HS Device

Features, such as “:percentage”. If this is done then take care to associate only one of the multiple rows

that could provide the same data.

Figure 169 Emporia Usage as HS Device Features

At the top of in Figure 169 is the polling control buttons and interactive endpoint text box. The buttons

are used to start and stop the polling. These will not normally be used. The text box is used to send

one-time requests to the Emporia server.

The specific need for this text box is to obtain the deviceGids value that is needed to poll the energy

data that was setup on the Cloud Page, URL Tab. Enter (without quotes) “/customers/devices”.

This should result in a request being sent. If accepted then the MQTT Page, Association Tab will show

Page 290

many rows of data about the Emporia devices. The payload column will show the deviceGid for each

device such as:

Sub: URL/api.emporiaenergy.com.GET:channels:02:deviceGid 123456

This number will be used in endpoint text box of the Cloud Page, URL tab for the Emporia row.

There is no longer any need for the data in the Association Table that was just populated to get the

deviceGid. To clean this up go the MQTT Page, General Tab, Obsolete row text box and enter (without

quotes) “URL/api.emporiaenergy.com.GET:#”

The step-by-step setup of the pieces described above is itemized below.

1. Install PyEmVue from command line with “pip install pyemvue” in command/terminal window.

Note possible variation between Windows and Linux described above to have success with the

install.

2. Download AWSlogin and place in Python packages folder

3. Download AWSKeys, unzip into \data\mcsMQTT folder and edit for login credentials

4. Edit \config\mcsMQTT.ini if the path to python.exe is not C:\Python37-32\python.exe. Note

again a variation in Windows vs. Linux where Linux may require use of an additional bash script

and change to how PythonPath is specified.

5. On Cloud Page, URL tab enter URL https://api.emporiaenergy.com, GET radio for protocol,

oAuth2 as authorization

6. On HS Devices page select URL for Room and locate the Feature

api.emporiaenergy.com:Control. In the text box enter /customers/devices

7. On MQTT Page, Association Tab, look for the deviceGid in Payload column and write it down.

Using the J3 filter for deviceGid on the Topic filter may make it easier to find the six-digit

deviceGid in the Payload column.

8. Optionally, on MQTT Page, General Tab, Obsolete Row textbox enter

URL/api.emporiaenergy.com.GET:# to remove the data that was just obtained for the

deviceGid

9. On Cloud Page, URL tab enter the following after updating the deviceGids number and scale if

desired /AppAPI?apiMethod=getDeviceListUsages&deviceGids={123456}&instant=$$UTCYEAR:-

$$UTCMONTH:-

$$UTCDAY:T$$UTCHOUR::$$UTCMINUTE::$$UTCSECOND:.0Z&scale=1MIN&energyUnit=Kilowat

tHours

10. On Cloud Page, URL tab enter polling rate that should be consistent with the scale parameter.

For example, if scale=1D then no need to poll every second, but perhaps 1 hour would be

appropriate.

https://api.emporiaenergy.com/

Page 291

If an Emporia outlet is being used and the desire is to also control this outlet from HS then an

“A”ssociation will need to be made on the Topic that reports the outlet state and some changes

made on the Edit tab.

The Topic is provided in the same URL endpoint that is used to determine the Gid and will end with

“outletOn” such as row 1 in Figure 170. Once “A”ssociated with the “A” checkbox then the HS Ref

will be assigned and the Edit tab accessed by clicking on it. There needs to be a publish topic

defined so the HS buttons will be created and the VSP modified for case sensitivity and to change

True/False from Emporia to On/Off in HS. These edits are shown in Figure 172.

Figure 170 Emporia Outlet Topic

The URL endpoint on the Cloud Page URL tab also needs to be changed from polling the single endpoint

to get usages to also poll the devices endpoint to get the outlet status. This is done by using the name

of the publist file for the endpoint rather than the explicit single endpoint. See Figure 171.

Figure 171 Emporia Outlet Publist Endpoint

Page 292

An example \data\mcsMQTT\Emoria.pub file contents is shown below where Gid shown in red will be

user dependent. Note multiple Gids are entered with “+” separator such as 123456+654321. Note that

the Emporia querystring contains “=” so it needs to be escaped with “\=” because mcsMQTT uses the

“=” to separate the URL querystring from the data that is sent with POST and PUT methods.

$$1:=URL/https://api.emporiaenergy.com

$$2:

$$3:

$$4:

$$1:/AppAPI?apiMethod\=getDeviceListUsages&deviceGids\={/AppAPI?apiMet

hod\=getDeviceListUsages&deviceGids\={126621}&instant\=$$UTCYEAR:-

$$UTCMONTH:-

$$UTCDAY:T$$UTCHOUR::$$UTCMINUTE::$$UTCSECOND:.0Z&scale\=1MIN&energyUn

it\=KilowattHours}&instant\=$$UTCYEAR:-$$UTCMONTH:-

$$UTCDAY:T$$UTCHOUR::$$UTCMINUTE::$$UTCSECOND:.0Z&scale\=1MIN&energyUn

it\=KilowattHours=

$$1:/customers/devices=

Page 293

Figure 172 Emporia Outlet Edits

Page 294

12.11 Coulisse B.V. Motion-Blinds.com Blinds Control
WiFi controlled motion blinds can be obtained from https://motionblinds.com/ with a WiFi hub as

described at https:/d.otto.de/files/65ff764c-b2c7-538f-b555-4751394351b5.pdf.

 Several other brands are known to work as well including the llist below from a HomeAssistant

integration. Other information included herein was also derived from the integration described at

Motion Blinds - Home Assistant (home-assistant.io).

AMP Motorization, Bliss Automation - Alta Window Fashions, Bloc Blinds,
Brel Home, 3 Day Blinds, Dooya, Gaviota, Havana Shade, Hurrican,
Shutters Wholesale, Inspired Shades, iSmartWindow, Martec, Motion
Blinds, Raven Rock MFG, Smart Blinds, Smart Home, Uprise Smart,
Shades

An API reference is avaialbe on post #10 at Possible to controll blinds from "motion-blinds.com" /

Coulisse B.V. ? - HomeSeer Message Board. Communications are on UDP port 32101 from the WiFi hub

and on 32100 back to the hub. Multicast IP 238.0.0.18 is used by the WiFi hub.

Integration with HS is setup from the mcsMQTT Cloud Page, URL Tab by entering the IP of the WiFi hub

using port 32101 such as shown in Figure 173.

Figure 173 Setup for Coulisse B.V. Blinds

The WiFi hub will be sending a “heartbeat” message on 238.0.0.18:32101 every 30 or 60 seconds.

mcsMQTT will be listening for this message. If a heartbeat is not heard for a minute, then mcsMQTT will

simulate the heartbeat. This is to deal with the installations that do not reaceive the multicast UDP

messages.

When received, the plugin will send a request on the URL IP that was setup to ask for the list of devices

being supported by the WiFi hub. From this list mcsMQTT will create a HS Device and set of Features for

each such as shown in Figure 174.

There are three types of blinds supported by the WiFi bridge. Standard, Top-Down/Bottup Up, and

Double Roller. While the structure is in place to support all types, at this time the Standard blinds are

the only of the three that are implemented. Users with other types are needed to complete the

integration testing.

https://www.home-assistant.io/integrations/motion_blinds/
https://www.ampmotorization.com/
https://www.altawindowfashions.com/product/automation/bliss-automation/
https://www.blocblinds.com/
https://www.brel-home.nl/
https://www.3dayblinds.com/
http://www.dooya.com/
https://www.gaviotagroup.com/en/
https://havanashade.com/
https://www.hurricaneshutterswholesale.com/
https://www.hurricaneshutterswholesale.com/
https://www.inspired-shades.com/
https://www.ismartwindow.co.nz/
https://www.martec.co.nz/
https://motionblinds.com/
https://motionblinds.com/
https://www.ravenrockmfg.com/
https://www.smartblinds.nl/
https://www.smart-home.hu/
http://uprisesmartshades.com/
http://uprisesmartshades.com/
https://forums.homeseer.com/forum/homeseer-products-services/general-discussion-area/1534729-possible-to-controll-blinds-from-motion-blinds-com-coulisse-b-v
https://forums.homeseer.com/forum/homeseer-products-services/general-discussion-area/1534729-possible-to-controll-blinds-from-motion-blinds-com-coulisse-b-v

Page 295

Figure 174 Coulisse B.V. Blinds HS Device and Features

To be able to interact with the WiFi hub an access token is needed. The token is a 16-bit AES-128

encryption of the token provided in the heartbeat message using an encryption key that can be obtained

from the smartphone App for the blinds. Obtaining this key is described below.

The Motion Blinds API uses a 16 character key that can be retrieved from the official “Motion
Blinds” app for IOS or Android.

Open the app, click the 3 dots in the top right corner, go to “settings”, go to “Motion APP
About”, Please quickly tap this “Motion APP About” page 5 times, a popup will appear that gives
you the key.

Please note that “-” characters need to be included in the key when providing it to Home

Assistant. The key needs to be similar to 12ab345c-d67e-8f

The secrey encryption key is entered on the mcsMQTT Cloud Page, URL Tab as shown in Figure 173.

The payloads used to communicate use JSON format. The decoded data received can be see on the

MQTT Page, Association Tab. There is more information available than is automatically used by

mcsMQTT to create the HS Device and Features. This data can also be “A”ssociated with HS from the

“A” column checkbox of the Association Tab. Similarly, the “A” checkbox can be unchecked for Features

that are not of interest within HS. See Figure 175

https://apps.apple.com/us/app/motion-blinds/id1437234324
https://play.google.com/store/apps/details?id=com.coulisse.motion

Page 296

Figure 175 Coulisse B.V. Association Table

mcsMQTT send data to the WiFi hub using port 32100. This is the Publish Topic on the Association Tab.

It uses the Payload Template to format the JSON such as below:

{"msgType":

"WriteDevice","mac":"500291b691fd","deviceType":"$$PAYLOAD:(URL/192.16

8.0.17-32101.UDP:mac-500291b691fd:deviceType):","AccessToken":

"<<AES128("$$PAYLOAD:(URL/192.168.0.17-

32101.UDP:mac:token):","$$SECRETKEY:")>>","msgID":"<<$$UNIX:>>","data"

:{"targetPosition":$$CAPIVALUE:}}

Replacement variables are used to dynamically complete the payload. deviceType is obtained from the

rececieved JSON of the deviceType JSON key.

"deviceType":"$$PAYLOAD:(URL/192.168.0.17-32101.UDP:mac-

500291b691fd:deviceType):",

AccessToken gets the token received in heartbeat message, the SecretKey entered on the URL tab, and

the AES128 encryption function.

"AccessToken": "<<AES128("$$PAYLOAD:(URL/192.168.0.17-

32101.UDP:mac:token):","$$SECRETKEY:")>>",

msgID needs to change with each transmission so the Epoch time which changes every second is used to

get a changing value.

Page 297

"msgID":"<<$$UNIX:>>",

Data contains the command to be executed which is from the HS CAPI Control that was the event to

send the message.

"data":{"targetPosition":$$CAPIVALUE:}}

mcsMQTT makes a request back to the WiFi hub each time it receives a heartbeat (or simulated

heartbeat) message. It will make a request for one device supported by the hub and after all device

statuses have been requested it will ask again for the list of devices. This methodology will allow new

devices to be added to the hub and for status to be refreshed periodically without any user action

necessary.

The WiFi hub used “mac” as the key to uniquely identify each device it is supporting. The “mac” key has

been setup as an Elevated JSON key so it looks like part of the Topic thus allowing the data to be

separately viewed for each device reported by the WiFi hub.

The battery status is reported as a voltage. mcsMQTT assumes a two-cell battery pack is being used

which has a full change reading of 8.4V. Three cells have 12.6V. Four cells have 16.8V. If two-cell is not

being used then the mcsMQTT Edit Tab, expression text box should be edited to correctly capture the

range of the battery.

Page 298

12.12 Thermostats

12.12.1 NuHeat Thermostat

NuHeat provides a WiFi-enabled thermostat used to control floor heating. The device is managed via a

Cloud connection and this connection is used to integrate with HomeSeer.

Figure 176 NuHeat Thermostat

The setup of each NuHeat thermostat is done from the Cloud Page, NuHeat tab as shown in Figure 177.

If multiple thermostats are used then a semicolon is used to separate the Id of each. This Id is available

from the NuHeat site account login.

Polling can be setup to keep HS in sync with the NuHeat server and the thermostat. If not setup then a

status update in HS will only occur 20 seconds after a HS control action is taken such setting a temporary

setpoint.

Normal operation of the thermostat is to run off of its internal schedule. This schedule can be

interrupted by selecting a SetPoint Temperature. This will be the new temperature for heating control

for the next hour. The ScheduleMode will reflect TempHold status.

The Schedule Mode can be changed to indefinite hold of the SetPoint Temperature with the Hold

button. The Run button on Schedule Mode is used to restore the normal internal schedule of the

thermostat.

Page 299

Status is shown for the equipment being in heating vs. quiescent operation. Status is also shown for the

temperature sensed by the thermostat.

Figure 177 NuHeat Thermostat Setup

The following information is provided by the NuHeat cloud server. Each item is visible in the Association

table of the MQTT Page. Those in blue are automatically mapped into HS Device and Features as shown

in Figure 178.

The Groups Device is created when the Authorize API V1 Access for Groups is clicked, authorizatoin (via

oAuth2) is granted, and one or more Groups has been defined in the account.

SerialNumber : 1234567

MaxTemp : 7000

Room : NUHEAT

MinTemp : 500

GroupName :

ErrorCode : 0

GroupId : -1

Confirmed : true

GroupAwayMode : false

Email : myemail@yahoo.com

Temperature : 2050

TZOffset : -06:00

Page 300

SetPointTemp : 2000

Assigned : true

ScheduleMode : 1

FloorArea : 75

OperatingMode : 1

KwCharge : 0

HoldSetPointDateTime : 2022-06-13T02:00:00+00:00

WPerSquareUnit : 12

Online : true

SWVersion : 201

Heating : false

HasBeenAssigned : true

DistributorId : 1

Figure 178 NuHeat Thermostat Device(s) and Features

Page 301

12.12.2 Nexia / Trane / American Standard Thermostat

Figure 179 Trane Thermostat

Nexia thermostats are branded as Nexia, Trane, or American Standard. They are integrated via a cloud

server. Two servers are available. One used to support a desktop/browser access and one to support a

mobile App. There is overlapping information. mcsMQTT toggles between each server to get the full set

of data of interest. The integration is done by emulating the operation of the desktop and App.

The cloud server login requirements are username and password, the house id of the thermostat(s) and

the brand. The house id can be obtained by logging into your Nexia/Trane/AS account, selecting the

Climate option, and then observing the URL being used by the browser. It will contain the numeric

house id. Polling rate is also specified in the setup as shown in Figure 180.

Page 302

Figure 180 Nexia / Trane / American Standard Thermostat Setup

There is much information available from the servers. A subset is selected for mapping into HS Devices

and Features. A thermostat device is created and one or more zone devices are created. In the case of

a single zone, some zone information is contained in the thermostat device based upon how the cloud

server reports. A combination of controllable and status only features are created for each device as

shown in Figure 181.

Figure 181 Nexia HS Devices

Page 303

The are two cloud logins that are used. One intended for mobile applications (first URL) and one for the

desktop applications (second URL). The mobile application includes configuration information so is used

for most of the setup of HS Devices and Features. In the case where login does not give access to the

mobile site, the standard site is used, but controls created will not be functional. The second site just

contains data of current state. Some information is available on only one of the two sources. Some is

available on both. The first URL is polled at 20% of the polling rate and the second at 80%. This means

mode, scheduling, etc. is only updated every fifth polling interval and the others are update on four of

five polling intervals. The specific features and source are shown below.

Blower - Only desktop URL

CompressorSpeed - Only desktop URL

RequestedCompressorSpeed - Only desktop URL

Emergency Heat

Aircleaner

DehumiditySetPoint

FanMode

FanSpeed

FanCirculationTime

OutdoorTemperature

IndoorHumidity

ZoneMode

Scheduling

OperatingState - Only mobile URL

SystemStatus - Only mobile URL

HeatingSetpoint

CoolingSetpoint

Temperature (if available)

Humidity (if available)

Preset (if available)

12.12.3 Carrier Infinity / Bryant Evolution / Ion

The Carrier family of advanced HVAC equipment provides a System Access Module (SAM) that provides

a bridge between the Carrier Internet server and the RS-485 serial communications used between the

Page 304

thermostat and the HVAC equipment. mcsMQTT has implemented a means to use the cloud server to

get status and control the thermostat. There was also a reverse-engineering of of the RS-485 called

Infinitude that is not supported by the plugin.

The cloud API provided by Carrier has been encapsulated using Python as is available as a library module

under the name carrier-api. A Python, version 3, install on the same computer as mcsMQTT is needed

to run this library. The Pyton install varies based upon the OS.

A Python library is available with instructions and repository at https://pypi.org/project/carrier-api/ .

The Python MQTT and HTTP library is also needed. They are most easily installed from the command

line / terminal window using PIP with the command

pip install carrier-api

pip install paho-mqtt

pip install aiohttp

When both Python2 and Python3 are in the environment then

python3 -m pip install carrier-api

python3 -m pip install paho-mqtt

python3 -m pip install aiohttp

If Python3 and PIP are not yet installed on the Homeseer computer they first need to be installed.

Version 3.10 and 3.11 are known to work with the Carrier-API library. Use Google for guidance on

installing them on the OS that is hosting Homeseer. After installation, the folder where python.exe

needs to be identified as it varies. There will also be a \Scripts subfolder that normally is a subfolder of

where python.exe is located on Windows.

The integration of this library with Homeseer is done with the Python script CarrierRequest.py that is

available in the mcsMQTT download package and originally installed at subfolder \bin\mcsMQTT. It will

not be run from this location, but is moved to the \Scripts subfolder of the python install or an alternate

location on Linux.

During installation of Python, the PYTHONPATH environment variable is normally updated with path to

where the Python libraries are installed. PYTHONPATH will be discussed later.

The mcsMQTT setup for Carrier integration is on the Cloud Page, Thermostats Tab. See Figure 182.

Note the full path to python.exe and the Scripts folder in the setup. Also needed are the email and

password to the account that was setup with Carrier.

Data is polled for status updates to handle the local control being synced with HS. Provision is also

provided to disconnect the connection with the cloud server. This disconnection will also result in the

Python script CarrierRequest.py being terminated. CarrierRequest.py is managed by mcsMQTT and run

when the setup is complete and not disconnected.

Page 305

Figure 182 Carrier Thermostat Setup

mcsMQTT will launch CarrierPython.py using the default shell account. If the Python libraries were

installed with a different account, which is the normal Linux situation, then Python cannot be executed

directly because PYTHONPATH has not been defined for the shell account. In this situation then it needs

to be launched via a script that also contains the definition of the PYTHONPATH.

A sample script for Linux will contain something like below when the path to the site-packages Python

version being used and the path to where the CarrierRequest.py was placed. It also requires that

mcsMQTT be told to run the script rather than Python. The setup is the same as shown for Omnilogic

below with the name Omnilogic changed to Carrier.

#!/bin/bash

export PYTHONPATH=/home/mcs/.local/lib/python3.11/site-packages

/usr/bin/python3 /home/mcs/Scripts/CarrierRequest.py $1 $2 $3 $4 $5 $6

Page 306

Figure 183 Launching Python via a Bash Script

In summary, the setup consists of installing Python and two libraries and then filling in the setup info on

the MQTT Cloud Page, Thermostats Tab. A successful install will result in HS Device and set of Features

being created such as shown in Figure 184.

A failed install has multiple places to look for clues. mcsMQTT Debug.txt is enabled from the MQTT

Page, General Tab. The Python \Scripts folder will have CarrierDebug.txt. MQTT messages on Topic

Carrier/Response will also exist that may contain Python execution traceback information.

Page 307

Figure 184 Carrier Thermostat HS Device and Features

Page 308

12.13 Tank Utility
Tank Utility is instrumentation to monitor Liquid Propane (LP) tanks. The commercial product consists of

the sensor and a smartphone app. It can be purchased on Amazon at

https://www.amazon.com/Generac-7009-Tank-Monitor-White/dp/B09WZGK4FL . There is a published

API at http://apidocs.tankutility.com/ which is what the integration with mcsMQTT is based. The

integration is based upon periodically polling the data available from the Tank Utility server and making

the data available in a convenient presentation within HS. The data is uploaded from the sensor to

Cloud server once per day. mcsMQTT synchronizes to this time and then polls at 10-minute intervals 24

hours later to get the next reading.

Multiple tanks can be integrated. For each tank the following JSON payload is available. Those items in

yellow highlight are used for the HS integration. If other items are desired then an update can be done.

device_id : 002700373232373103473035

short_device_id : ABCDEFGH

name : Tank 1

address : 123 MyStreet,My Town, My State, My Country

account_id :

fuel_type : propane

fuel_dealer_id :

connection_type : wifi

product_id : WIFI-G

product_name : Generac Tank Monitor

supplier_id : -supplier123

status : deployed

capacit
y

: 25
0

orientation : horizontal

consumption_types : cooking,fireplace

consumption_type

{11}

backup_heating : false

bulk_storage : false

commercial_industrial : false

cooking : true

fireplace : true

generator : false

heating : false

hot_water : false

laundry_dryer : false

pool : false

retail_fill_up : false

battery_warn : false

battery_crit : false

battery_level : good

average_consumptio
n

: 0.10714285714285714

https://www.amazon.com/Generac-7009-Tank-Monitor-White/dp/B09WZGK4FL
http://apidocs.tankutility.com/

Page 309

estimated_fill_da
te

: 2024-03-23T21:08:01.600Z

fixed_transmission_time : -1

reading_interval : 21600

transmission_interval : 86400

threshold_1 : -1

threshold_2 : -1

change
_of_va
lue

: -
1

lastReading

{12}

tan
k

: 56.47379

temperature : 58.782

time : 1680590098000

2023-04-04T06:34:58.000Z

time_iso : 2023-04-04T06:34:58.000Z

sw_rev : 12.005

event_code : 0

fixed_transmission_time : -1

reading_interval : 21600

transmission_interval : 86400

threshold_1 : -1

threshold_2 : -1

change_of_value : -1

telemetry

[5]

0

{13}

attempt_no : 0

chn : 1

cipher : 229

ecn : 3

http_status_code : 200

modem_ram : 51032

module_temp : 0

module_voltage : 0

rssi : -87

ssid : MySSID

time_to_conn : 17.395

tlm_time : 1680590120

type : wifi

The setup includes account username/email and password. This is available on the Cloud

Page, Tank Utility Tab such as Figure 185. An option also exists to disconnect/reconnect to the Tank

Utility server.

http://56.0.185.19/
http://58.0.3.14/
http://12.0.0.5/
http://17.0.1.139/

Page 310

Figure 185 Tank Utility Setup

One HS Device is created for each tank with the properties of interest shown as Features. See Figure

188. This information is also available on the MQTT Page, Association Tab. Customizations can be done

from this location such as selecting a measurement for historical recording and subsequent charting.

The example in Figure 186 shows where the tank level measurement has been selected for “s”hort term

storage. The History Tab of the MQTT is used to define the when the data is removed from short term

storage. Perhaps a month or a year. It can also be stored in external database for “l”ong term storage.

Figure 186 Tank Utility Association Table Entry

Selecting a chart is done from the MQTT Page, Chart Tab where the measurements to appear on the

same chart are selected and the period of time of the data being drawn. An example is shown in Figure

187.

Page 311

Figure 187 Tank Utility Measurement Chart

Figure 188 Tank Utility HS Device and Features

Page 312

12.14 Abode Security

Abode provides a security panel at a reasonable price that utilizes modern technologies such as WiFi and

Zigbee for sensors and actuators and a wired or wireless connection to the internet. All activity is

managed through their cloud server with primary UI being a smartphone. They provide a monitoring

service, but is not required for normal operation.

Abode does not provide a public API. Data availalble has been reversed engineered. Much of the

mcsMQTT development has levereged the Hubitat Groovy https://github.com/jorhett/hubitat-

abode/wiki and Home Assistant Python https://github.com/MisterWil/abodepy implementations. Both

of these developments are stale with Abode having added new devices and are not contained in these

references. What is included in mcsMQTT is based upon devices in possision or with cooperation of

other HS users. In general all status information is available in HS Device and Features. Most controls

are also available, but not all due to the lack of information on the expected control parameters.

The integration to HS has a minimal setup of email and password as shown in Figure 189. The email and

password are the same as used when installing the security system via smartphone.

https://github.com/jorhett/hubitat-abode/wiki
https://github.com/jorhett/hubitat-abode/wiki
https://github.com/MisterWil/abodepy

Page 313

Figure 189 Abode Setup Parameters

On startup mcsMQTT will request information about the panel and devices that have been configurerd

on the account. HS Devcies and Features will be created such as shown in Figure 190.

The plugin will establish a WebSocket with the Abode server. This conduit is the primary mechanism to

receive status update of the panel and devices. In some cases the event reported will contain new

status information. In other cases the event report will include only the identification of the device that

has had some type of status change (e.g. color change in light bulb). In these cases mcsMQTT will

request a status update of the device from with the HS Feature status is updated.

The primary interface with the panel is the mode information. The panel supports two areas that are

independently managed. Devices will be setup to be in one of the two areas via the smartphone App.

When mcsMQTT, fob, or smartphone app commands a mode change, the event will be reported, but the

event report will not provide which area has had a mode change. The change is available immediately

when requested for devcie changes, but panel changes are not immediately availalble. mcsMQTT waits

60 seconds to request the panel status update which will include the mode status of both areas.

Two timers that countdown every second during arming and prior to alarm that mimics the timers

contained in the Abode panel. They are only infomational.

The plugin includes a Connection Featue that has three states. Normal, Inactive, and Failure. It is

managed as part of the Pong response from Abode server on the WebSocket which occurs every 25

seconds. If it has not been received for 120 seconds then the Normal state will transition to the Inactive

state and an attempt made to restart the connection. If the conection is not restored in 20 seconds

Page 314

then the status will migrate to the Failed state. This monitoring is in addition to monitoring that is done

behind the scenes with auto recovery attempts done automatically.

Panel mode management is focused on the Area 1 Mode. Abode does not provide event notification

that can be used to distinguish Area 1 from Area 2. The HS Area 1 Mode Feature is updated based upon

event reporting for the panel or event reporting for the Fob. Fob status will show the last event state

reported for the fob which could be different than the last event reported for the panel. Variance will

typically occur if the Fob is not used to change the mode.

Figure 190 Abode HS Devices and Features

Camera support consists of two controls. One to turn the camera on or off for privacy. The other is to

capture the current image being seen by the camera. Images will also be captured when the alarm

panel snaps a picture when the alarm triggers. Each image will be saved in a HS subfolder

\html\mcsMQTT\xxx.jpg where xxx is the ID of the camera that took the snapshot. A second copy if

made in same folder with fixed filename of Abode.jpg. mcsMQTT will also create a thumbnail of the

image and place it in the DeviceString of the camera’s snapshot Feature. The DeviceValue of this

Page 315

Feature will increment with each image download. Clicking on this image will bring up the full-size

image. In addition, an archive of the image will be copied to the user-specified video folder with a

subfolder created for each camera if that location is specified on the Cloud Page, Abode Tab setup.

Note that a snapshot will still take the image even when in privacy mode.

The color light device has multiple controls. All are functional except the switch and brightness controls.

The Abode returns code 600 – Panel Error when trying to control these from the plugin.

Page 316

12.15 Irrigation

12.15.1 Orbit B-Hyve Irrigation

Orbit provides consumer-grade smart irrigation controllers with their B-Hyve line. It operates using WiFi

to provide setup and operation via smartphone. Once setup it will operate locally, but if dependent

upon weather data when setup for smart or ET-based irrigation the control will become stale.

mcsMQTT integrates the run-time information from the controller and provides common user controls

such as selecting among the programs that have been setup or running a station asychronously. Plugin

setup is on the Cloud Page, Orbit Tab as shown in Figure 191. Setup uses the login to the user’s Orbit

account and provides a mechanism to disconnect and reconnect to the cloud server as well as

asychronously request all data from the Orbit Server.

Two communication channels are used. One is HTTPS that is used at startup and polled every five

minutes. Primary use is to get the equipment definitions that are used to setup the HS Devices and

Features. The polling will update status, but the primary status update is with the WebSocket channel

that reports real time events from the controller and is used to deliver asynchronous commands to it.

The implementation is based upon data gathered by others through a reverse engineeing process. The

control flow for the plugin is based upon the Hubitat Groovy code GitHub - dcmeglio/hubitat-

orbitbhyve: Provides integration with a Orbit™ Bhyve Timer and SmartThings. The control endpoints

were primarily gathered from Python implementaiton that looks to also be used by Home Assistant

GitHub - sebr/pybhyve: Python library for interacting with the Orbit BHyve API . In the end the

integration was completed using a man-in-the-middle exploit to decode the traffic from the Orbit BHyve

App and using this to reverse-engineer the functionality provided in the plugin.

https://github.com/dcmeglio/hubitat-orbitbhyve/
https://github.com/dcmeglio/hubitat-orbitbhyve/
https://github.com/sebr/pybhyve

Page 317

The plugin gathers information from multiple URL endpoints that include Devices, Timelines, and

Landscapes. A History endpoint is also available that is not used. Devices describe the Stations.

Timelines relate to the Programs. Landscapes related to smart irrigation.

Figure 191 Orbit B-Hyve Account Setup

A HS Device is create for the Panel and one for each Station. From the Panel Device it is possible to

select amoung the programs that were setup on the smartphone, to change the operation between Off

and Auto and to pause or delay the program. Status is also provided for the next start time, the battery

status, panel connection status and rain delay that may be active. Date-Time information is presented

in the Status and DeviceValue is populated with the Unix local time.

Each station has a control to run the station for a specified amount of time and to set the soil moistue

level when smart watering is active. Status information for the Station is watering status, last start and

end times, rain sensor status and the timed vs. smart control. Orbit only provides the current water

level in response to a request to change the level. It does provide any other polling or event-based

reporting to reflect the current moisture level so the HS status will not change from the level at which it

was manually set.

Page 318

Status updates from Orbit server are obtained on an event basis via a WebSocket connection. This

connection is actively monitored and attempts wil be made every 25 seconds if the connection is lost.

Polling will occur every hour as a precaution and as a means to monitor the connection in a closed-loop

manner.

A Monitor HS Feature is provided that shows the number of minutes since the last data from Orbit

Server has been received. During quiescent times this value is expected to reach 60 minutes. A control

on this Feature is provided to restart the plugin’s support of the Orbit integration.

Figure 192 Orbit B-Hyve HS Devices and Features

Page 319

12.15.2 Hunter Hydrawise Irrigation

The integration with the Hunter Hydrawise unit is performed with the second generation (V2)

methodology of oAuth2 for authentication and GraphQL for query of the Hunter Hydrawise server. This

API provides access to the controller, sensors, and zone relays. Much information is available from the

Hunter Hydrawise server, of which a subset is selected for automatic creation of HS Devices and

Features. A Device is created for each controller and Features are created for status information for the

controller, sensors and zones.

The controller Summary Feature can be used to control all the zones per the schedule that has been

setup. No provisions exist in mcsMQTT to manage schedules. This is done with the Hydrawise

App/Account.

Controller overall control provisions apply to the current schedule with ability to Start, Stop, Suspend,

and Resume the schedule. See Figure 193. When suspending the schedule, the HS Feature

Suspend.Hours is used to specify the number of hours that the suspension will be enforced by the

controller. By default, this is one hour, but can be change by HS Event or HS Devices Page user entry.

The entry can contain fraction hours such as 1.25 to provice a pause of 75 minutes. Setting

Suspend.Hours has no immediate effect. Suspend operation is performed by the “Suspend All” or

“Suspend Buttons”.

The status is reported in Device Value and Device String. The Device String is what will be visible on the

HS Devices Page as the status. The controller Device Value will be zero when no zone is running. It will

be one when any zone is running. The Devices Page status icon will also provide a visual indication of

the stopped vs. running status.

Similar controls and status exist for each zone. A run time text box is also included for the zones. The

number entered via HS Device Page or Event action is the number of minutes to manually run the zone,

independent of what is programmed in the schedule. Again, fractional values can be used such as 10.5

to run the zone for 10 minutes and 30 seconds. The submit textbox will show the time entered and will

be updated each minute to show the time remaining. It wil be 0 when not running.

The status reporting is from the Hunter Hydrawise server and stored in the HS Device String. With

standard HS Events the Device String cannot be used as Event triggers, but the EasyTrigger plugin has

such capability if needed.

All Features will be updated based upon the current information on the Hunter Hydrawise server every

60 seconds when no zone is active and 20 seconds when at least one is active. The water flow

information is updated based upon the raw water flow sensor to show real-time water use. Upon

completion of a zone the water use is synchronized with the Hydrawise server using the completion

event data from the server.

Zone status is shown in the Zone Feature’s Device String and will be visible on the HS Devices Page. This

will be the current status summary from the Hunter Server and will include the “suspend until”

information if is is available from the server.

Page 320

Figure 193 Hunter Hydrawise Default HS Devices and Features

User setup is on the Cloud Page, Irrigation Tab, Hunter Hydrawise Section as shown in Figure 194.

Required is the username (email address) and password that was setup when registering the Hydrawise

device. One or more Hydrawise accounts are supported.

Data is obtained from the Hydrawise server on a periodic interval. Provisions exists for finer resolution

when the irrigation is active. There are account access constraints so the default values of 60 seconds

when inactive and 20 seconds when active may need to be increased depending upon how often

irrigation is active.

Page 321

Page 322

Figure 194 Hunter Hydrawise Setup

There is considerable information available from the Hunter Hydrawise server. By default, it is not

exposed. If a user wants to associate additional information into HS Device Features, then it can be

exposed with the setup selection. Creation of additional HS Device Features is done from the MQTT

Page, Association Tab with the suggested filter of “Hydrawise” as the T1 filter. Figure 194 is an example

of the additional information in the table. Note that for this one controller there are 633 items in the

table.

Hydrawise provides a flow sensor with the running count of the volume of water that has been used.

The plugin computes each zone flow from this sensor when a zone is active. A reset button is provided

Page 323

that can also be controlled by event to reset the virtual flow sensor value back to zero. It is

automatically set to zero at the start of a run and at midnight.

The historical flow data will be stored in the SQLite short term database. The data can be viewed

graphically with a stacked column chart in one for four time periods. The period is selected by a button

push and the chart will appear above the buttons. These charts can also be requested via a http request

to the HS IP such as http://192.168.0.100/mcsMQTT/Popup.html?Payload=2681&Days=2 for HS3 and

http://192.168.0.100/mcsMQTT/Popup.html?Payload=2681?Days=2 forHS4 where 2681 is the Ref of the

Hydrawise controller Virtual Flow Feature and Days=2 is the number of days of stacked columns. If Days

parameter is omitted then it will default to the prior chart request number of days.

There is also user selection to disconnect from the Hunter Hydrawise server. This applies to all

accounts. When disconnected there will be no communication for control or status updates.

Figure 195 Hydrawise Additional Information

Page 324

12.16 Solar Panel Integration
Solar integration collects data from locally installed panels using Solar_Assistant and pulls data for

forecast energy generation from Solcast for the next 24 hours with eight grouping for the day. The

forecast is nominally updated each hour. Local panel generation data is pushed over a MQTT channel.

This integration is in cooperation with HS user Daveyboy who initiated the discussion and provided most

of the ideas and data for this integration.

Setup is from the Cloud Page, Solar Tab. The forecast from Solcast requires the user’s resource Id to be

entered. Solar Assistant MQTT server IP is needed for the local data. A radio control is also provided to

connect/disconnect from both servers.

Figure 196 Solar Panel Integration Setup

Page 325

12.16.1 Solcast
HS Device and Features are created at startup when the Solcast resource id has been entered. Updates

occur each hour. The data from Solcast is assumed to be in UTC time so it converted to local time for

grouping ins HS Features. This grouping is defined as:

Early morning 6 am through 9 am

Late morning 9 am through 12 pm

Early afternoon 12 pm through 3 pm

Late afternoon 3 pm through 6 pm

Early evening 6 pm through 9 pm

Late evening 9 pm through 0 am

Early night 0 am through 3 am

Late night 3 am through 6 am

The forecast data is delivered in 30-minute intervals. Each 30-minute interval within the

defined timer periods is summed to produce the value recorded in the HS Feature.

Solcast is a subscription service with different rate plans available. The plan will determine

the number of daily downloads that will be available. The quota is a user setup parameter

as shown in Figure 196.

Since data is being quantized into eight time-slots per day there is not a need for frequent

downloads. Downloads more frequent than every 30 minutes will result in little new

information since that is the interval quantized by Solcast. Download every hour (24/day)

seems to be a good balance.

Each forecast provides 48 hours of data. mcsMQTT uses only data for the next 24 hours.

The three-hour bucket it selects is based upon the local time of day for the forecast. This

means that if the download occurs at 10 AM, the data in the 6 AM to 9 AM bucket will be

tomorrow’s forecast while data in the 12 PM to 3 PM bucket will be today’s forecast.

Page 326

Figure 197 Solcast HS Device and Features

12.16.2 Solar Assistant

SolarAssistant is software used to locally monitor and control your solar PV install. It is
designed to run on a Raspberry Pi that is plugged into the solar inverter and optionally a
battery BMS. The application can be accessed from a web browser or the Android/iPhone
app via local network or the internet. It is available at Online Shop | SolarAssistant (solar-
assistant.io) as a RPI image for around $55. Also needed are a Pi, a SD card and a special

cable to link from the Pi to your Inverter.

The table below provides the status of the SolarAssistant support of various inverters at the
time of this writing (May, 2023).

Supported Inverters Not-yet Supported Inverters

Axpert ABB
Growatt APEX/MLT
EG4 Atess
Deye Fronius
Kodak Epever (Expected late 2023)
SunSynk Renology
MPP Solar Schneider
Sol-Ark Sofar
Mecer Solar edge
RCT Solax
Must Power Solis (Expected mid 2023)
SRNE Victron
InfiniSolar

https://solar-assistant.io/shop
https://solar-assistant.io/shop

Page 327

Easun Power
Megarevo
Luxpower

The killer app with SolarAssistant is that it's all local, manufacturer independent and you get

some really cool charts too - no need to rely on a cloud connection, the manufacturer's

website, data being bounced through China etc.

mcsMQTT provides the mechanism to leverage this capability with integration of the data

into HS. You can view and make actions within Homeseer on live data direct from your PV

install. Battery charge levels, PV levels, house load, grid load. You can even change

configuration parameters on the Inverter to preemptively take advantage of tomorrow's

weather conditions. Turn the hot tub on/off if there is excess PV, turn the water heater on/off

if the batteries are getting low, kill the power to the tumble dryer etc - there are so many use

cases that this integration enables.

12.16.2.1 SolarAssistant Installation

Full SolarAssistant configuration is available at https://solar-assistant.io/help/gett...prepare-

device. After you've got your SolarAssistant up and running you'll need the local

IP address from their Configuration Page:

And then enter this into the Solar Tab, under the mcsMQTT, Cloud page in HomeSeer:

Back in SolarAssistant make these changes from the Configuration Screen:

https://solar-assistant.io/help/getting-started/prepare-device
https://solar-assistant.io/help/getting-started/prepare-device

Page 328

Note: No authentication is required for this local network connection.

With the SolarAssistant setup to Enable HomeAssistant Discovery, wIthin a few minutes

there will be new devices automatically created in Homeseer. Is HomeAssistant Discovery

is not enabled then the data from SolarAssistant will only appear in the Association Table of

the MQTT Page of mcsMQTT. From this table, the “a” column checkbox is used to mark

those pieces of data for which HS Device and Features will be created.

The created devices will be placed in a HS Room based upon the MQTT being used by

SolarAssistant. If HomeAssistant Discovery is Enabled then the following is the expected

view from HS.

HS totals room:

Page 329

HS inverter_1 room:

There will also be a bunch of new devices created in the HS inverter_1 room (around 80) -

these are unique to each install and to each inverter. You will probably discover that this

information mostly will not be useful to you but a few certainly will be (e.g. battery

temperature, PV load etc.), however, we cannot give guidance here which ones you may

wish to remove. Removing Features is done from the MQTT Page, Association Table by

removing the “a” column checkbox from the table’s row. This tells mcsMQTT to not

associate the SolarAssistant specific piece of data to a HS Feature. Note, if the Feature is

removed using the HS Devices Page, then a new Feature will be created if HomeAssistant

Discovery has been enabled.

Communicating to the Inverter is possible from HS if the Association Table or Edit Tab of

the mcsMQTT MQTT Page is provided a Pub(lish) Topic. This will be the same as the

Sub(scribe) Topic, but end with /set rather than /status.

Our Disclaimer: You must be extremely careful in sending data to control your inverter from

HS as this could render your Inverter inoperative. Only change what you would normally

change via the main Inverter console. You will have received warnings and disclaimers from

SolarAssistant when you signed up to their service so you will be aware of the risks.

Page 330

12.17 Pool

12.17.1 Hayward Omnilogic Pool

Hayward provides a Omnilogic control for pool heating, chlorination, lighting and other features.

The integration with Homeseer is based upon the Github Python API implementation at

https://github.com/djtimca/omnilogic-api. A Python, version 3, install on the same computer as

mcsMQTT is needed to run this code. The Pyton install varies based upon the OS. This download is

installed with

pip install omnilogic

The Python MQTT and HTTP library is also needed. They are most easily installed from the command

line / terminal window using PIP with the command

pip install paho-mqtt

pip install aiohttp

When both Python2 and Python3 are in the environment then

python3 -m pip install paho-mqtt

python3 -m pip install aiohttp

If Python3 and PIP are not yet installed on the Homeseer computer they first need to be installed. Use

Google for guidance on installing them on the OS that is hosting Homeseer. After installation, the folder

where python.exe needs to be identified as it varies. There will also be a \Scripts subfolder that

normally is a subfolder of where python.exe is located for Windows installs.

The integration of this library with Homeseer is done with the Python script OmnilogicRequest.py that is

available in the mcsMQTT download package and originally installed at subfolder \bin\mcsMQTT. It will

not be run from this location, but is moved to the \Scripts (or alternate) subfolder of the python install.

During installation of Python, the PATH environment variable is normally updated with path to python

and the scripts subfolder. It may be necessary to have these definitions in PATH.

The mcsMQTT setup for Omnilogic integration is on the Cloud Page, Pool Tab. See Figure 198.

Page 331

Figure 198 Hayward Omnilogic Pool Integration Setup

Note the full path to python.exe and the Scripts folder in the setup. Also needed are the email and

password to the account that was setup with Hayward Omnilogic.

For Linux users, see the setup for Carrier Integration Section 12.12.3 for the approach to deal with the

environment variable PYTHONPATH that is not defined when running Python from the shell account.

Data is polled for status updates to handle the local control being synced with HS. Provision is also

provided to disconnect the connection with the cloud server. This disconnection will also result in the

Python script OmnilogicRequest.py being terminated. OmnilogicRequest.py is managed by mcsMQTT

and run when the setup is complete and not disconnected.

mcsMQTT will automatically create an HS Device for each pool and set of features such as in shown in

Page 332

Figure 199 Hayward Pool Omniologic HS Device and Features

Page 333

12.18 Govee Lighting +

Govee produces a wide variety of products that are focused on lighting. Typical are LED strips. Primary

automation access is via the Cloud per the published API Version 1

https://developer.govee.com/reference/control-you-devices . Secondary access is local using UDP. UDP

control is limited to Power, Color, Brightness, and Color Temperature. Secondary (LAN) control also

needs to enabled from the Govee smartphone App. Refer to https://app-h5.govee.com/user-

manual/wlan-guide to assess if your product has LAN control capability and the process to enable it.

mcsMQTT will evaluate if LAN control is possible, issue the command via the LAN, monitor for returned

status, and if a failure will revert to control via the cloud for the specific command attempted.

The Govee cloud server provides setup information and that is what is used by mcsMQTT to create the

HS Device and Features.

Setup is from the mcsMQTT Cloud Page, Govee Tab as shown in Figure 200. The required Govee API

Token is obtained from the Govee Smartphone App as described at the start of the above Govee API

link.

Govee places a limit of 10,000 calls to their server per day. Each device in the account needs to be

separately polled for status so if there are two devices then the polling rate is reduced by 50%. Polling

values of 10000 milliseconds for one device, 5000 milliseconds if two, etc. There is no limit on LAN

polling and 5 second interval has been implemented in mcsMQTT.

When polled only some of the properties are updated, but when controlled the status update for the

controlled property is updated. This implies that if external control, such as with App, is done then HS

may not be aware of this action. It appears that only those properties that have LAN control will have

status updates when polled. Effects/Scenes, for example, are not updated in status polling for the light

strip being used for testing.

https://developer.govee.com/reference/control-you-devices
https://app-h5.govee.com/user-manual/wlan-guide
https://app-h5.govee.com/user-manual/wlan-guide

Page 334

Figure 200 Govee Setup

HS Devices are created on plugin start and can also be done via the Request Govee Devices button. The

Features and properties are disclosed in the data received from the server so each model of product will

have a specific definition and the appropriate Features will be created. Those for the basic light strip

model H615C are shown in Figure 201. Once created, they will not be recreated. Use of the Obsolete

mechanism for all or selective properties can be used to remove existing Features and have them

recreated.

The polling can be stopped and restarted with the Disconnect radio.

When testing the H615C the only anomaly observed is that the Brightness is specified as percentage in

the range of 1 to 100. When controlling Brightness, it appears the control range is 1 to 25 while status

reported is 1 to 100. The plugin will be updated if other models also exhibit the same behavior.

Page 335

Figure 201 Govee HS Device and Features

The API provides for event-based updating for what looks to be oriented to appliance-like products with

events such as ice maker out of ice. There were no events reported for control of the light strip. If one

desires to obtain these event notifications then a connection to the Govee MQTT Broker is needed. The

parameters to be setup on the MQTT Page, Broker Tab are:

Broker IP … mqtt.openapi.govee.com

Broker Port … 8883

Security … TLS1.2

Username … the same API Token used on the Cloud Page setup

Password … the same APPI Token used on the Cloud Page setup

Note that these will be enter as an additional Broker where semicolon is used to separate the values for

each Broker.

Event data will be visible in the MQTT Page, Association Tab table and should be on Sub Topic of GA/#.

Page 336

13 Interactive
The Interactive page provides a means to interrogate variables, execute expressions and send messages

similar to the MQTT Send Message event action.

Any expression that is supported by mcsMQTT can be used. This includes all the HS replacement

variables using syntax $$X: or $$X:(Y):. The first are replacements without parameters such as TIME. e.g.

$$TIME:. The second is for those that have a parameter such as DTR. e.g. $$DVR: (123): [no space

before (]. If the result is a string rather than a number then encase in quotes. This will be the case for

TIME so the first example should be "$$TIME:". Another example is "$$DTR: (123):".

Expression and functions can be used such as SIN($$DVR: (123): + MOD(5,2) to use it as a HS-oriented

calculator.

When sending messages and an expression is desired the use the << and >> symbols to encase the

expression. This is shown in Figure 202.

Two forms of interactively working with the HS object are provided. One is a command line format that

can be an expression. It will be much like the immediate script command event action provided by HS.

The other is to run an existing script command located in the \scripts subfolder of HS and interactively

include input parameters to the script. The full syntax in the textbox is script filename, functionname,

parameter. If the script has functionname of “Main” and no parameters being used then simply enter

the name of the script file. Examples are:

Test.vb,Main,1 pass a number

Test.vb,ArrayMain,{1,2,3} pass array of integers as the parameter

Test.vb,StringMain,”1,2,3” pass a string

Test.vb no parameters passed and function name is Main

Function Main(Parm As Object) as Object

 hs.Writelog("Script","FunctionTest")

 If isNumeric(Parm) Then

 Return "Number " & (11 + Parm).ToString

 Elseif isArray(Parm) Then

 Return "Array " & Parm.Length.ToString

 Else

 Return "String " & Parm

 End if

End Function

Figure 202 shows use of replacement variable DVR to get access to the DeviceValue as well as using the

hs.DeviceValue method for the same purpose. Both use the same expression of summing the two

devices values. Result & Feedback boxes show the result of both interactive methods. If a script does

not return a result or an error occurs running the script, the feedback will be “null”.

Page 337

Figure 202 Interactive Page

Page 338

14 StreetMap (HS4 Only)
Two capabilities are provided by mcsMQTT that utilize the data feed from OwnTracks or NextTracks that

provides location information for smartphones. The first is to augment the data feed with Distance and

Here-Away indication. The HS location is always available so the Here-Away normally can be used for

Home vs. Away indication. Additional locations that identify the center of another geofence can be

added on the Cloud Page, Geofence tab.

The second feature is available on HS4 only. It provides a browser page with a street map view that

identifies the smartphone locations on the map.

14.1 OwnTracks Setup
The OwnTracks page provides a street map view of Android phone OwnTracks tracking App. OwnTracks

is available from the Android Play Store. Once installed it is setup in preferences to point to MQTT WAN

address of the MQTT broker being used by mcsMQTT. mcsMQTT supports multiple brokers so it is

possible to setup a WAN broker and LAN broker.

The OwnTracks App in your smartphone will send position updates to a MQTT broker. You setup the

IP/URL of the MQTT broker, a username and a password in the smartphone App. When using mcsMQTT

the easiest MQTT broker setup is the internal broker that shares the same IP/URL as Homeseer.

Anything can be entered for the username and password. There is no setup to be done on the mcsMQTT

side other than was exists as the defaults. If you want you can enter the same username and password

on the MQTT page, Broker Tab, Broker Username and Broker Password text boxes to improve security,

but it is not required to achieve functionality.

The smartphone needs a way to get through your firewall on port 1883 so you need to make this

happen with your router. The IP/URL that you use for the MQTT Broker needs to be visible on the WAN.

This means you cannot enter something like 192.168.1.100, but use a DNS name such as myHome.com.

If you do not have your own domain then you need to use a service such as no-ip.com or if you have a

web camera, they often provide the DNS service. ASUS routers also provide this service.

The smartphone will push position changes to the MQTT broker, which in this example is mcsMQTT.

mcsMQTT will show what the smartphone has provided on the mcsMQTT MQTT Page, Association tab.

Anything on that page can be mapped into HS devices with the "A"ssociate checkbox. Lat and Lon are

typically what is of interest.

In summary

1. Setup a DNS service and firewall so your Homeseer computer can be accessed from the WAN on port

1883. As an alternate use a public WAN MQTT Broker. I think HiveMQ is one, but I have no particular

experience with this one or other MQTT Broker in the cloud.

2. Install mcsMQTT plugin for HS4

3. Install OwnTracks on smarthone and configure it to use the DNS name of Homeseer computer and

any username and password

4. Repeat step 3 for your second smartphone

5. Navigate from HS Menu to mcsMQTT MQTT Page, Association tab and observe table Lat and Lon rows

and click "A" column checkbox on each to create HS device and features.

Page 339

6. If you want to observe a street view map of the location of your smartphones then navigate to

mcsMQTT plugin, StreetMap page.

OwnTracks has multiple modes of reporting so that battery drain is minimized. The highest resolution is

for movement. The lowest resolution is for major changes. When the movement threshold has been

reached (based upon mode being used) a MQTT message is delivered with new Lat and Lon coordinates.

These will be visible on the Association Tab of the MQTT page such as shown in Figure 203.

Figure 203 Owntracks MQTT Report for Android Phone

14.2 Street Map Browser Page (HS4 Only)
mcsMQTT knows that a street map visibility is desired when the “:lat” JSON item is associated wth a HS

device. Normally one also Associates the “:lon” item so the postion coordinates are available in HS

Devices.

Page 340

To view the street map, use the StreetMap page from the mcsMQTT plugin menu. When this page is

viewed and a new MQTT message is received with a change in Lat or Lon then the page will be refreshed

to show the new position.

Figure 204 mcsMQTT Plugin Browser Page Options

Figure 205 shows an example of display for two Android phones. The “@” symbol starts at the reported

position. The Id setup in OwnTracks App (and is used as the last element of the MQTT Topic) is also

drawn to identify the specific phone.

The Map is scaled so that all phones are visible. If they are close then the map will span a few hundred

feet. It is rescaled as the separation between phones changes.

Page 341

Figure 205 OwnTracks Display Page

14.3 Geofence Here-Away Tracking
mcsMQTT will calculate the distance from a smartphone to the center of a geofence locations and then

use these to assess if the smartphone is inside or outside the geofence boundary. The information will

be included in the owntracks topic such as shown in Figure 206. In this example there are two geofence

locations, named HS and Home, setup on the Cloud Page, Geofence tab. Each will have a JSON key of

Distance and HereAway.

Page 342

Figure 206 Geofence Topics

Any or all of these can be associated with HS Devices. In this example the two HereAway devices are

created with HS status reflected as shown in Figure 207.

Figure 207 Geofence Presence Devices

Page 343

15 Bluetooth Low Energy (BLE) Page (HS3 Only)
HS3 supports two modes of BLE operation. One is for purpose of determining Home vs. Away for a

beacon. This is the same capability provided in HS4 on the Local Page, Bluetooth tab. HS3 plugin also

supports a more extensive implementation that uses multiple BLE receivers for purpose of placing a

beacon on a X/Y grid. Onley one of the two modes can be used at the same time. The following

paragraphs describe the location identification mode of operation. See the Local Page, Bluetooth tab for

Home-Away mode of operation.

The mcsMQTT support for BLE is intended to provide location information of devices that contain BLE

capability. It can be used for presence detection of location identification. The BLE scanner(s) being

supported is described in Section 20.16.

BLE is often used in smartphones, fitness bands, smartwatches, audio equipment and tracking beacons.

The BLE protocol provides a means for one BLE device to request that other BLE devices advertise their

MAC address. In the Section 20.16 implementation ESP32 devices will periodically make this request

and the ESP32 will then listen for the MAC addresses that are advertised. After signal processing by the

ESP32, information on changes in advertised locations are published via MQTT. mcsMQTT will provide

the visualization and HS interface for this information.

The BLE MAC address is a crucial element for the tracking beacon and the ability of devices such as

fitness bands to recognize what or who is reporting. For smartphones the MAC address presents a

security concern so the MAC address being advertised is usually randomized to protect the identification

of the smartphone at any given location.

While discrimination of specific smartphones is not possible, it is possible to determine if the MAC

address provided is from a valid supplier and if not then assume it is a randomly generated one and is

associated with some smartphone. The ESP32 can be configured to group all MAC addresses without a

recognized supplier into a single MAC so that presence can be reported. Location information, however,

will not be valid for the case of multiple smartphones being present.

15.1 BLE Page Description
The BLE page is selected from the HS menu under Plugins\mcsMQTT. It provides three tabs. One for

the setup and viewing of data from ESP32 microcontrollers that report beacon position information.

See Section 20.16 for the ESP32 side of the project which describes the algorithms employed and the

MQTT interface specification. The remaining two tabs are used for viewing bubble charts that show

beacon locations. One is for current location of all beacons and the movement of a beacon over the last

24 hours. These charts can also be viewed as popups or created on-demand via HTTP requests.

The architecture of the system consists of multiple ESP32 each running the BLE scanning function. The

ESP32 will exchange information about the beacon measurements each is making. They will each

calculate the distance a beacon is from itself based upon the RSSI measurement. It will communicate

this distance to all scanners. Each scanner will calculate the beacon location based upon the distance

radius from each scanner. Since all scanners have the same information the location calculation done by

each scanner will have the same X,Y result. There are timing differences that will cause slight variance in

each calculation. For final location reporting a master scanner is selected. All scanners will report the

Page 344

same beacon location as computed by the master scanner. Should the master scanner go offline then a

new master will be determined.

In addition to (X,Y) coordinates on a 100 ft by 100 ft grid, the scanners also report a Figure Of Merit

(FOM) and a Zone. The FOM is an assessment of the quality of the location determination and will range

from 0 up to 49.

A FOM of 0 will indicate that the beacon is no longer in range of any scanner.

A FOM of 11 indicates that a beacon is in view of exactly one scanner. The beacon (X,Y) will be

the location of the detecting scanner.

A FOM of 22 to 39 indicates that at least two scanners view the beacon, but the range radius is

too small to have overlapping radius of three scanners. The last digit of the range is the FOM is

the number of scanners that view the beacon. In these cases, a weighted average algorithm is

used to assess a position somewhere in the middle of the beacons that detected the beacon.

A FOM above 33 indicates that trilateration can be done to compute the (X,Y) location of the

beacon. Again, the last digit is the number of scanners that can detect the beacon. The location

will be determined by a set of three scanners that have overlapping distance radius from the

beacon.

The Zone is a single number computed as 100 * X + Y coordinate of the beacon. It is intended to be

available for use in detecting a beacon that has moved. Hysteresis is applied to the Zone value so that it

will not change with small changes in X or Y. This makes it a good event trigger.

15.2 Getting Started with BLE
There are two major components to the BLE scanning system. One is the MQTT infrastructure that

supports the mcsMQTT Plug-in. Sections 2 and 3.1 contain information to setup this piece.

The second is the ESP32 that will need to have the firmware installed that was developed to perform the

BLE scan function. Source that was developed based upon a branch of Tasmota using Platform IO and

VS Code. This environment provides for compilation and downloading over USB serial. The files of

interest are at http://mcsSprinklers.com/ESP32_BLE_BinaryAndLoader.zip (1 MB) binary application,

bootloader and partition table http://mcsSprinklers.com/BLEScanner.zip (75 MB) ESP32 source from

PlatformIO folders. Updates to the original uploads are at

http://mcsSprinklers.com/ESP32BLEScanner.zip for binary and

http://mcsSprinklers.com/BLEScannerSource.zip for source.

The firmware can also be installed from a precompiled binary using the tools provided by Espressif at

https://www.espressif.com/en/products/hardware/esp32/resources . Select Tools and “Flash

Download Tools”. Unzip to a folder, run the .exe and select ESP32 button. A panel shown in Figure 208

will appear. On the top row navigate to the binary to be downloaded. The partition used for the

firmware is 0x10000 so enter that at the end of the first row. The same zip file contains two additional

.bin files. One is the bootloader and the other is the partition table. Add these in subsequent rows with

addresses 0x1000 and 0x8000 respectively. Use checkbox on the three rows. Select the COM port at

the bottom of the panel. Click first the ERASE button to clean any prior data from the flash. Click START

button. Download will occur with progress bar at the bottom and info about the chip populated in the

text boxes on the panel. It takes a few minutes. The button shown as IDLE in green will change to

http://mcssprinklers.com/ESP32_BLE_BinaryAndLoader.zip
http://mcssprinklers.com/BLEScanner.zip
http://mcssprinklers.com/ESP32BLEScanner.zip
http://mcssprinklers.com/BLEScannerSource.zip
https://www.espressif.com/en/products/hardware/esp32/resources

Page 345

FINISH when done. Only the first file is needed so uncheck the row 2 and row 3 checkboxes if firmware

is loaded later. If the ERASE button is used again then all three are needed to be downloaded.

Figure 208 Espressif Flash Download Tool

Start up a terminal program such as Termite and connect to the same COM port as used for the flashing.

Termite is at https://www.compuphase.com/software_termite.htm.

Cycle power on ESP32 or use its reset button on the circuit card. A startup sequence will show such as

Figure 209. There are three items of particular interest. The first is the group topic BLEScanners shown

at the end of the Project line. The second is the MQTT topic that shown as BLEScan/0. The IP will be

needed to access ESP32/Tasmota via browser.

If the IP is not shown then the SSID and password are needed. At the bottom of Termite page is a text

box to enter data to be sent over the serial connection. The commands that can be used are at

https://github.com/arendst/Sonoff-Tasmota/wiki/Commands. In particular the SSID and PASSWORD

commands. I use the backlog command to consolidate these two into a single line. This is shown below

https://www.compuphase.com/software_termite.htm
https://github.com/arendst/Sonoff-Tasmota/wiki/Commands

Page 346

where ???? will be replaced by your specific WiFi network credentials. The “;” in backlog command is

used as a command separator.

backlog SSID ????; PASSWORD ????

The ESP32 will restart and the startup will be displayed on the serial terminal again. Note the IP address

assigned by DHCP server. One can also go to their router or other mechanism to identify the IP address.

Use a browser with URL at this IP to complete the setup.

Figure 209 ESP32 Startup Log

It may also be possible to establish the connection using WPS, but I have no experience with this

approach.

Select the Tasmota Console button which will provide an interface similar to the serial one. The scanner

ID is a number between 1 and 10 needs to be specified. This is done with command like:

ScannerLocation 1,10,20

Where 1 is the ID and 10,20 are the X,Y coordinates on the 100x100 grid that the ESP32 will be placed.

The ScannerLocation command can be entered on the terminal program (e.g. Termite) rather than at

the Tasmota Console. No particular advantage of using one vs. the other, but the next step is to

configure Tasmota so a browser connection is needed.

15.2.1 Tasmota Configuration
The BLE Scanning operation is affected by the setup of the following Tasmota pages:

Configuration : ConfigureModule - No Effect on BLE scanning. Other modules functions should be able

to be selected to extend the capability of the ESP32 to more than BLE scanning.

Page 347

Configuration : ConfigureTimers – No Effect.

Configuration : ConfigureWifi – Needs to be setup but no direct implications to BLE scanning.

Configuration : Configure MQTT – Needs to be setup but no direct implications to BLE scanning.

Configuration : Configure Logging – When Serial or Web log level is set to “3 Debug” then the scanning

report of which beacons were found in the last scan will be shown on the Console. Telemetry period

defines the interval when the scanner CONFIG and beacon Characteristics messages will be published.

They will also be published on a change.

Configuration: ConfigureOther : The friendly name does not affect the BLE scanning operation, but it is

useful to set it so access to a scanner can easily identify which scanner is being accessed. In my case I

use the scanner ID so a friendly name may be something like “BLE Scan 3”.

Information – No Effect.

FirmwareUpgrade – Convient way to update the firmware vs. using the serial connection. I have had

mixed results with sometimes it works, sometimes I get a timeout and sometimes it tells me that the

image is too big.

Console – Used to interact with a single scanner. The additional commands described in Table 7 can be

used via the Console.

Restart – No Effect.

15.3 Tips
MQTT topics are formed from the friendly name of the beacons. This means that all scanners need to

have the friendly names set for a proper exchange of information and collection of data by mcsMQTT.

It is easier to collect beacon names and then remove the ones that are not of interest rather than trying

to catch a particular beacon. The general sequence is to have the BeaconDisable set false (0), collect

beacons for several minutes until you are certain that all have been seen and the beacon info exchanged

among scanners. Set BeaconDiable true (1) to prevent other beacons from being recognized. Look at

the beacons that have been observed by each scanner on the Beacon Location table. Click the R(emove)

checkbox followed by the column header button to send the BeaconRemove command to the scanners.

What will remain is just the beacons of interest.

RSSI measurements have fluctuation so cannot be considered to be very accurate for distance

measurement. Use of the Kalman filter will tend to improve the accuracy, but still movement of the

beacon to a different distance may not always result in much of a RSSI difference.

If all scanners and beacons are placed at the same location the variance in RSSI measurements can be

observed. If one scanner appears to be out of whack vs. the others then the ScannerGain can be

adjusted for it. Use the Distance measurement on the Beacon Locations table to observe the effect of

changing the gain.

Location identification is done by different algorithms depending upon the quality of the measurements

being received. A good location will be identified when three scanners have intersecting distances from

the beacon. If, for example, all beacons distances make it appear the beacon is close to each scanner

Page 348

then the distance radius will not overlap. This means that when tuning the beacon distances, one

should error in making the beacons appear further rather than being closer. For example, if the RSSI at

1 meter fluctuates around 60 and 70 then select a calibration reading closer to 60.

Don’t worry too much about maximizing the availability of the trilateration algorithm. The Figure of

Merit in the 20’s uses the weighted average or sometimes called triangulation algorithm. It will produce

reasonable results.

All BLE data should be tagged for Express mode processing unless there are special other needs for the

data. There can be considerable MQTT traffic and Express mode minimizes the processing time to

handle each received message.

15.4 Setup Tab
The setup tab contains tables for configuration of the ESP32, their status and the viewing of the beacon

data. A table also exists to manage the viewing within the setup tab and a pair of buttons for facilitate

actions.

When setting beacon parameters from the mcsMQTT BLE Setup tab the entered values will be sent to all

ESP32 scanners. If updates are desired to only one scanner, then the commands should be entered on

the Tasmota Console page per the new command definitions in Table 7.

15.4.1 Page Viewing Options

The page viewing options are shown in Figure 210.

The beacon current location chart is shown on the second tab on the BLE page. It can be generated on

demand using the button provided on that tab. It can also be generated and updated automatically as

long as the BLE page is open. The “Auto Update of Beacon Location Graphic” checkbox enables the auto

update. The negative side to auto update is the CPU resources used, but this should be minor unless

considerable beacon motion is occurring or filter parameters are setup such that noisy behavior exists in

the location determination.

Figure 210 BLE Setup Tab Viewing Options

The beacon table is organized with one row for each beacon and a number of columns that contain

information about the beacon. In its most austere format, the columns will show location information.

Additional columns can be shown to include the text boxes to setup the transmit power calibration of

each beacon. The most verbose format includes the RSSI information to assist with setting up the

Page 349

Kalman filter parameters. Once created, the Beacon Location table, will generally not be updated as

new data is received from the scanners. The “Refresh Beacon Locations Table” can be used to refresh

the table with the most current reporting from the scanners.

The first column of the Beacon Location table is a (H)ide checkbox. Using this checkbox will exclude the

beacon from the display. This is a declutter function. All hidden beacons can be restored for display by

using the “Override” checkbox. Unless there are many beacons this function likely will not be used.

The Beacon table and the Parameters table is populated with data from one scanner. The scanner’s

data that is to be used is selected with the “Selected Scanner” radio. As the radio selection is changed

the Beacon Location and Parameters tables are automatically updated. The Parameters table is updated

in real time. Selecting the “Stop Updates” option will prevent the table entries from being updated as

one is trying to make changes to the parameters for subsequent publishing. After the desired changes

are made then a specific scanner should be selected so the data in the tables is a reflection of what is

being provided by the ESP32.

15.4.2 Configuration Parameters Table
The Configuration Parameters table is shown in Figure 211. Its primary function is to view the settings

that exists within the ESP32 and provide a mechanism to change them. The data values in this table are

updated based upon the MQTT CONFIG topic that is published periodically or upon a change of a

parameter. The specific ESP32 scanner being viewed is selected from the Viewing Options table as

described in Section 15.4.1.

It should always be the case that all ESP32 scanners are using the same configuration parameters. All

the configuration parameters, including those in the Beacon Location table, can be publish to all online

ESP32 scanners using the “Publish all Scanner and Beacon Parameters” button on the Setup tab.

Normally this button is not needed unless a new ESP32 is being brought online and you want to set it to

have the same configuration as the others. For ESP32 that have already been setup then and just

individual parameter is to be changed then when the change is made in the Configuration Parameters

table then it will be published to all ESP32 scanners.

Page 350

Figure 211 BLE Configuration Parameters Table

The top two rows of the Configuration Parameters table are not transmitted to the ESP32 scanners.

They are used to tell mcsMQTT the Group and Individual topics recognized by the ESP32 scanners.

While these can be changed from the defaults of BLEScanners and BLEScan, there is no need. It is

necessary that what is reported by the ESP32 is the same as what is setup in mcsMQTT so it there is a

change then make the change in both places. The ESP32 will suffix the base topic with the scanner ID

for the individual scanner topics. Tasmota is configured with the same topics used here. The ESP32 will

suffix the individual topic with the ID of scanner. When one looks at the topic published by the ESP32

they will see something like BLEScan/1 where 1 is the ID of this scanner.

The Tasmota console or a serial terminal such as Termite is used to define the ID of each scanner

individually. The command is “ScannerLocation ID,X,Y” where ID is a number between 1 and 10, X is the

grid X coordinate and Y the Y coordinate where this ESP32 scanner is located. These coordinates are on

a 100 ft by 100 ft grid.

Most of the remaining parameters are just a user interface to setup the ESP32 parameters per the

protocol defined in Section 20.16.5.

The Scan Interval and Scan Duration parameter define how often a scan is performed. 60 second

interval and 30 second duration are the values used in the prototype written to evaluate the function.

Longer durations allow infrequently reporting beacons to be more easily detected. Shorter durations

improve the responsiveness of the location determination.

Page 351

Reporting frequency is to manage the MQTT traffic based upon what is useful. Every scan will result in a

new calculation iteration. Any change in distance between the scanner and beacon will be sent

following the scan. This is used by the other scanners to maintain coordination of all distance

information being collected. Other information about the beacons and the calculations will be sent

periodically at the log rate which is typically every five minutes. They can also be sent more often based

upon a change in (X,Y) or change in Zone. This extended information is intended for other clients such

as mcsMQTT when one is trying to view more deeply into the execution of the ESP32 scanner.

When assessing the location algorithms within each ESP32 scanner it may be helpful to select a specific

scanner to be a master. Only the master’s (X,Y) and Zone are reported via MQTT. After the

investigation is complete the master should be restored to auto-select to allow the ESP32 to determine

the healthiest scanner to be master.

The next four rows of the Configuration Parameters table set the filtering parameters to reduce noise in

the location determination. See Section 20.16 for a better understanding of the contribution of each

parameter.

Beacon New Discovery as well as the Blacklist the Remove provisions in the Beacon Locations table are

used to manage spurious or obsolete beacons. Beacons that are not of interest should be removed to

avoid the MQTT traffic that is of no interest. Once all beacons of interest have been identified then the

New Discovery should be disabled.

The removal of individual beacons can be done from the Beacon Locations table using the (R)emove

column checkboxes. They can also be done in group using the one of the two Multiple Button Removal

buttons in the Configuration Parameters table. The REMOVEALL button clears out all the beacons info

from all scanners. The REMOVE UNNAMED removes all that have not yet been given a friendly name

and continue to use their address for topic identification. This second button will likely be the easiest

was to remove beacons that are not of interest. The process would be to first disable new discovery,

then to remove all the unnamed ones. What should remain are those that have been named so should

be just the ones of interest remaining.

The last parameter in this table is the MQTT retain flag. When mcsMQTT starts it will use the last

parameters that existed at the time of its prior shutdown. These may or may not be correct and will not

be updated until the periodic message is published from each ESP32. This is typically every five minutes.

When retain is enabled then the MQTT broker will hold the parameters published by each ESP32. When

mcsMQTT or any other subscribed client goes online the broker will provide the messages immediately.

Since each ESP32 also subscribes to data published by the other ESP32 scanners the broker will be

resending every time the ESP32 temporarily goes offline and then back online. One a message has been

retained by the broker it is a manual process to remove it.

15.4.3 Beacons Locations Table
The Beacons Locations Table serves the purpose of viewing and changing individual beacon parameters.

The table is shown in one of three formats depending upon the viewing option selected as described in

Section 15.4.1. Figure 212 shows the most verbose version.

Page 352

Figure 212 Beacon Location Table

Checkbox and textbox entries will result in the MQTT message being published to all scanners for the

updated (or refresh of existing) value. The leftmost H(ide) column checkbox only affects the displayed

page and does not affect the ESP32 scanners.

The R(emove) column will remove the beacon on the selected row to be removed from its flash

memory. The B(lacklist) column will mark the beacon as being inhibited from publishing status. The

(U)nblacklist column will undo the B(lacklist) column.

The Address column is the unique identifier for each beacon that is produced by the beacon during a

scan. The address is hyperlinked to a popup chart of this beacon’s location history over the past 24

hours.

The Vendor column will contain the results of a MAC database lookup. The database is in the cloud.

Three situations can occur with this. The vendor allocated the MAC address will be identified. The

second is that it is not found. In this case “Unknown” will be displayed. The third is too many accesses

have been made to the database in the allocated period. “Try Later” will be shown in this case. It will

be attempted again the next time the table is generated.

The Name column is used to give the beacon a friendly name. This name will become part of the Topic

that is publish for this beacon. An unchanged name will show as the MAC address with the colons

replaced by dashes.

The TxPower@1m and TxPower@10m entries serve as the calibration of the beacons transmit power

levels. The first is the RSSI when the beacon is 1 meter from the scanner. The second is the RSSI when

the beacon is 10 meters from the scanner. Some beacons will not have sufficient power to reach 10

meters so an estimate such as 100 (or -100) can be used. These can be adjusted as one learns the

behavior of the scanner/beacon relationship. The objective is to get reasonable distance measurements

from the RSSI reading. When making the measurements the RSSI filter should be turned off or set to a

small value as described in Section 15.4.2 so the distance reading will be sufficiently responsive to the

beacon position.

The next two columns show the RSSI reading and its value as it is filtered through the Kalman filter. In

the sample shown it can be seen that the RSSI and filtered RSSI are the same which is an indication that

the RSSI filter is turned off.

The Zone is a single number that can be used as a trigger. Small variances in the (X,Y) location will not

result in the Zone value change, but larger ones that exceed the zone hysteresis threshold (described in

Page 353

Section 15.4.2) will result in a change of the Zone. Note that the Zone is the value determined by the

master scanner. The other scanners just relay the master’s value.

The Figure Of Merit was previously described in the introductory Section 15. It provides a feedback as

the algorithm used and the number of scanners that are able to hear the beacon. Higher values

generally are better figures of merit.

X and Y are the calculated coordinates of the beacon. Like the Zone it is the value determined by the

master. Other scanners serve as a relay. This allows HS to see the same value no matter which scanner

happens to be the master at any given time.

The last set of columns are the distance measurements from all scanners for a given beacon. In the

example scanners 2 and 3 had not reported data in the last 24 hours so no information was available for

them. Distances are reported as -1 if no scanner has the beacon in range. In this example only scanner

5 had seen the first beacon in the last 24 hours and it no longer has it in range.

The address is a hyperlink that when clicked will pop-up the graphic that shows the 24 hour history of

the beacon. This is the same graphic that can be view on the 24 hour tab.

15.4.4 Scanner Location Table
The Scanner Locations table provides visibility into the scanners online status and the provisions to

setup its X,Y location as well as a factor to represent the receiver’s antenna gain. Figure 213 provides an

example showing three scanners.

The red highlight is an indication that the scanner is offline. In this case it is scanner 1. Because of this

offline status the other ESP32 have agreed to use Scanner 4 as the master for reporting the X,Y and

Zone.

The scanner location can be setup when the scanner Id is defined via serial or the Tasmota Console.

Alternately is can setup on the Scanner Locations table by entering the X comma and Y coordinates for

the desired scanner.

The receiver gain is nominally 100 percent. The gain can be reduced to make beacons appear closer.

This may be necessary if the scanner is partially blocked for RF. To make them appear at a greater

distance then the gain is increased. Greater distance has advantages in assuring that multiple beacons

will have overlapping radius thus improving the quality of location identification.

The scanner ID is a hyperlink that when clicked will popup the graphic that shows the current locations

of all the beacons that are currently in range of at least one scanner. This is the same graphic that can

be view on the Current tab.

Page 354

Figure 213 Scanners Locations Table

15.5 Location Tab
The Location Tab contains the graphic of the beacon locations at the time the BLE page was produced. A

button exists at the top to manually regenerate the graphic. It is also possible to regenerate it

automatically when the Zone value changes. This is setup as shown in 15.4.1.

Figure 214 provides an example of the location of two beacons with respect to five scanners. The

beacons are circles and the scanners are squares. The diameter of the beacon reflects the number of

scanners that are able to hear the beacon. Larger size implies more scanners. In this example there

were two scanners that were hearing BlueCharm beacon and four were able to hear Fessycom beacon.

Beacons with a Figure Of Merit of zero are excluded from the graphic.

The scanners are labeled with their Id number. The beacon is labeled with its friendly name. There are

two other ways to produce this chart. One is to produce a popup by clicking on one of the scanner Id

number hyperlinks in the Scanner table of the Setup tab. A second is to create the chart on demand via

HTTP request such as:

http://192.168.0.14/BLE?Beacon=current

In this case the filename in the HS \HTML\mcsMQTT folder that contains the graphic will be returned

from the http request.

Page 355

Figure 214 Beacon Current Locations Graphic

15.1 Distance Tab
The Distance Tab contains the graphic of the beacon distance from each of the scanners at the time the

BLE page was produced. A button exists at the top to manually regenerate the graphic. It is also

possible to regenerate it automatically when the Zone value changes. This is setup as shown in 15.4.1.

Figure 215 provides an example of the location of two beacons with respect to three scanners. The

beacons are circles and the scanners are squares. The diameter of the beacon reflects the distance from

Page 356

the scanner for the scanners that are able to hear the beacon. In this example there were two scanners

that were hearing BlueCharm (green) beacon and three were able to hear Fessycom (bisque) beacon.

While not shown on the graphic, the Figure Of Merit (FOM) was 22 and 23 for BlueCharm and Fessycom

respectively. The first “2” indicates that triangulation algorithm was used to identify location. The

second digit reflects the number of scanners able to hear the beacon. In the Fessycom case there were

three, but as the graphic shows that the distance circles do not intersect so triangulation rather than

trilateration was used to determine location.

The scanners are labeled with their Id number. The beacon is labeled with its friendly name and color

used to distinguish the beacons. There is one other way to produce this chart is with a chart on demand

via HTTP such as:

http://192.168.0.14/BLE?Beacon=distance

In this case the filename in the HS \HTML\mcsMQTT folder that contains the graphic will be returned

from the http request.

Page 357

Figure 215 Beacon Distance from Scanner Graphic

Page 358

15.2 24 Hour Tab
The 24 Hour Tab contains a selector to choose among the beacon to show their location history over the

past 24 hours. To collect history data to support this graphic the History tab on the MQTT Setup page

needs to enable history data collection for at least one day.

No graphic is shown at time of BLE page generation. Once a selection is mode the graphic will appear

below the selector.

Figure 216 provides an example of the BlueCharm beacon with respect to five scanners. The beacon

positions are circles and the scanners are squares. The cases where the beacon overlays the scanner

position, such as the upper left scanner in this figure, is an indication that this scanner was the only one

that was hearing the beacon at that time.

The scanners are labeled with their Id number. The beacon is identified in the chart title. There are two

other ways to produce this chart. One is to produce a popup by clicking on one of the beacon address

hyperlinks in the Beacon Locations table of the Setup tab. A second is to create the chart on demand via

HTTP request such as:

http://192.168.0.14/BLE?Chart=BlueCharm

In this case the filename in the HS \HTML\mcsMQTT folder that contains the graphic will be returned

from the http request.

Page 359

Figure 216 Beacon 24 Hours History Graphic

Page 360

16 Performance Considerations
mcsMQTT has the potential to manage a large set of data or it can be used in a very modest

environment. In the later situation it is likely that maximum user conveniences are made available. In

the former compromise may be needed to have a sufficiently responsive and CPU-considerate

operation.

16.1 HS Event Callbacks
mcsMQTT subscribes to HS callbacks for Device Value change or Device String change. If there are many

active HS devices then many callbacks could be generated and each evaluated to determine if a MQTT

Topic needs to be sent. mcsMQTT determines if a user has selected any Publish Value/Status and if so,

registers for the Value callback. It does the same for String. If at least one Device is mapped to Value

and String Topic publication then all changes in HS devices will be routed through mcsMQTT.

The callbacks are used to trigger publication of MQTT messages and to collect data for charting. If all HS

devices are selected the database will tend to grow large more quickly. The History tab selection for all

vs. only specific devices selected with Association tab D column checkbox will affect the database size

and CPU supporting this capability.

mcsMQTT maintains a queue of HS Event callbacks. In the callback it first assesses if the Device has a

publish Topic associated with it. If it does then it puts it in the Queue for later processing in an

independent thread. The Queue is processed until empty and then the thread is blocked until another

item is put in the Queue.

16.2 Express Mode
Express mode, selected on a Topic-by-Topic basis on the Association tab provides a means to update HS

devices based upon MQTT payload with a minimum of processing overhead. A CPU reduction of better

than 80% can be achieved for Topics identified for Express mode.

Express mode excludes the following:

• ability to store history of received messages with implications that charts cannot be made

• ability to use low pass filter on Device values, make rate devices or accumulate devices

• ability to store JSON content with parent and children devices grouped

• ability to map color x/y to RGB

• ability to collect VSP relationships after Topic selected as Express

• ability to refresh Association tab GUI payload and last change columns as Topics received

Express mode can be customized on the Client tab to include or exclude the following. There is little

CPU penalty for supporting these features, but if a feature is not used then some CPU savings can be

achieved by deselecting them on the Client Tab.

• decode JSON into separate HS devices

• use VSP text and color picker RGB to DeviceValue mapping

Page 361

• use regular and arithmetic expressions

• trigger HS events and script callbacks based upon received Topic

Table 4 shows a benchmark that compares Express mode vs. Full mode CPU utilization to process a

message with content shown for the Test Case. A RPi model 3 was used for the test. A test program

generated a MQTT message at 500 millisecond intervals. The time to process the message was

observed in the Statistics window and recorded. In general, the inclusion of additional features

supported in Express mode has a small effect on the CPU burden, but in situations of high MQTT traffic

these may become material.

During the analysis the most illuminating discovery is that almost all of the time for processing messages

was within HS following the calls to SetDeviceValue or SetDeviceString. When removing these calls, the

Express mode times were under 1 millisecond.

During Full support mode calls are made to get the HS device object (dv = hs.GetDeviceByRef) which

consumed 12 milliseconds and then each call that used the hs object as a parameter (e.g.

dv.Interface(hs)) used a similar time so working with the HS device object became expensive . In version

3.5.5.0 the use of the hs parameter was eliminated in favor of Nothing for the real time processing. The

assurance that DeviceString was empty for non-text devices was removed from the real time processing

and done during initialization. These steps resulted in a significant reduction in the CPU utilization for

Full support mode.

Table 4 Receive Message Benchmark for Full vs. Express Modes

Test Case V 3.5.1

Full

Support

V3.5.5

Full

Support

V3.5.5

Express

Mode

Incrementing Number 200 ms 32 ms 6 ms

VSP Toggle On / Off 200 ms 32 ms 6 ms

JSON with 5 keys and 1 associated with HS Device 310 ms 33 ms 6 ms

JSON with all 5 keys associated with HS Device (Number, Text, VSP) 510 ms 142 ms 32 ms

Express Mode does not support Parent/Child grouping. If any item of a JSON group is selected for

Express Mode then all items of that group will be forced to Express Mode as well. The opposite occurs

for deselection of any item that was previously selected for Express Mode.

16.3 Subscription Topics
By default, mcsMQTT subscribes to all Topics serviced by the connected Broker. This is done by

providing the wildcard # as the template for subscription along with any special Topics that have been

manually entered which contain Broker statistics. When mcsMQTT starts, it will connect to the Broker

and the Broker will respond with a burst of messages that it is responsible to deliver to newly subscribed

clients. The Retain=true flag per MQTT protocol used by the various clients will increase the size of the

initial connection message quantity. As a minimum the Broker will deliver the LWT status of all clients.

Page 362

mcsMQTT maintains a receive Queue to deal with the flooding at initial connection and in general

control the peak CPU utilization during message bursts. Three user settings are available on the Client

Tab Inbound (Subscription) Section to tune operation of the receive Queue. It is likely that no tuning is

needed, but it is available. mcsMQTT will process a set of messages as a group and then yield the CPU

for a user-specified period and then resume the process until the Queue is empty. When the number of

messages received exceed the size of the queue then they are discarded and not included in the

statistics.

Visibility to help tune the parameters is provided at the bottom of the MQTT/Statistics Topics shown in

Figure 217. A current Queue depth near 0 will provide the lowest latency between message receipt and

update of HS Device. The max size will usually occur upon initial connection. The average processing

time measures the time it takes to update HS devices and evaluate trigger conditions for each received

message. The average receive milliseconds is the interval between each incoming MQTT message on

the average. These averages will be dynamic at startup and become stable as a large number of

messages are processed.

Page 363

Figure 217 MQTT Statistics

It is also possible to have the statistics reflect in HS Devices for other uses. This option is selected with

the “A”ssociate checkbox on the desired statistic. These devices will be grouped in a parent/child

association with the parent being “MQTT Statistics”. See Figure 218 as an example of selected statistics

mapped into HS.

Events triggered by a change in connection status can be done either using the mcsMQTT connection

trigger (See Figure 39) or DeviceValue change of the statistics online/offline Device.

The last statistic is the CPU utilization over the past 60 second interval and represented as a percentage.

It is possible to setup an event that monitors the CPU use of the plugin. It is the same as the statistic

reported as part of the HS pseudo-topic.

Page 364

Figure 218 MQTT Statistics in HS Devices

16.4 Plug-in Startup
During startup the Plug-in performs a two-pass initialization. The first pass covers those things that

need to be setup to continue communication with HS. When this is complete a new thread is spawned

to cover those things that are needed to completely restore the plug-in to its state at time of last

shutdown.

For setups that have a large number of HS devices it takes some time to enumerate all of them to make

them available for viewing on the Association Tab. In most setups the HS device does not change that

often and then even when they do it may not be of interest to being a Topic that will be published via

MQTT. The Client Tab (Figure 40) Outbound (Publish) Section contains a radio to enumerate devices at

startup or only manually by button press.

The received topics and those setup for association are maintained in the \data\mcsMQTT.db database.

During startup the database contents are validated and transferred to RAM cache for better real time

performance. This process was benchmarked at approximately 30 milliseconds per topic. If there are a

significant number of topics being managed then this can take a significant amount of time before

mcsMQTT is totally ready to interact with HS. Two approaches are available to deal with environments

that produce a large number of topics.

The Client tab, Inbound Management section, Topic Discovery row allows the user to subscribed to all

topics being managed by the broker (the default) or to only receive a subset. If the subscription is

limited then there will be less for mcsMQTT to manage and performance will improve.

The General Tab, Obsolete Unassociated row has a checkbox that will remove all topics at shutdown

that had not yet been associated with HS device or used for history data retention. This allows new

topics to be recognized during a session, but if they have not been associated with HS device they will be

removed from the database as shutdown. This means that the next startup will not have the records in

the database and the startup will be faster.

Page 365

The plugin will monitor for excessive accumulation of records from received MQTT Topics. The user has

the ability to set this threshold on the General Tab, Receive Topic Warning Threshold textbox. The

default value is 10000 records which was selected based upon a benchmark of initialization times of 15

records per second on a 10-year-old Windows laptop (i.e. 12 minutes) and the size of the Device table

being used by HS. Each day the plugin will evaluate the size of the Association Table and provide a

warning in HS Log if it exceeds this threshold. It will also automatically remove the oldest unassociated

records to bring the record count to 75% of the warning setting when the warning setting is exceeded or

remove all unassociated records if there are more that 1000 unassociated.

During normal operation and much larger record count can be managed without a noticeable

performance penalty. This is a reflection of the general design philosophy of cacheing in RAM those

things that are part of repetitive operation. This tradeoff comes at the expense of startup time to build

the cache and validate the integrity of the data. The use of the General Tab, Obsolete Unassociated row

checkbox is the recommended means to keep the Association Table size in check, but it is only activated

following shutdown/restart of the plugin.

The timing for startup and page rendering can be viewed in the debug file

\data\mcsMQTT\mcsMQTT_Debug.txt. This will allow for assessing the benefit/cost of various settings

for any given environment.

16.5 Browser Page Rendering
When the mcsMQTT page is requested by either direct URL or from the Plug-in button on HS Browser

page, the is generated with multiple tabs. In general, the Association and History Tab content will only

be the selection filters with tables of data for each only produced when manually requested by button

push. The exception is for the Associations table that will be initially built if it is small. Small is defined

by the user setting in the mcsMQTT Management Section of the Client Tab.

All updatable and user-entry fields on the Browser page are encoded for update via AJAX protocol. On

user action or otherwise two second intervals changes will be updated on the page. The two-second

update is initiated by a timer in the Browser that does a post back to HS Server which forwards it to

mcsMQTT to send any updates needed via AJAX.

Independent Browser pages are managed by mcsMQTT. Within a Browser page the fields between the

Association Tab and Edit tab are synchronized as changes are made on either. This synchronization does

not occur across Browser pages. A Browser page that remained open when the plug-in started or

otherwise has expired will no longer be updated by mcsMQTT, nor will user entry on the expired page

be recognized.

Page 366

17 Reference Tool Tips

17.1 MQTT Page Association Tab
The Association tab is where most HS-MQTT activity is initiated. This tab contains a table that can be

quite large that will show all received MQTT topics and all HS devices. A user then needs to only click

the “A”ssociate column checkbox to map the topic to the HS device. If the communication is to be

bidirectional then a publish topic is also entered by the user in the textbox provided. Note that the user

may want to user the Edit popup or tab to specify the format of the MQTT payload that is being

published if it is not a simple numeric value.

Because the table can be quite large there are filtering provisions provided in the form of checkboxes,

textbox, and pull-down selectors. Use of these limits the size of the table. Once the filters are setup the

show button is used to display the selected topics and devices.

Three filter tables are provided. The first is a textbox into which the user can specify text that must exist

in the MQTT record. The record has multiple fields such as the subscribe Topic, the publish Topic, the

Payload, the VSP entries when mapped to HS devices and others. The text of interest is specified as

either simple text or as a regular expression. Regular expressions use the syntax REGEX(expression),

<<REGEX(expression)>>, or <<expression>>. Simple text is the pattern that must exit in one of the

MQTT record fields.

The second is oriented to HS devices and allow selection of one or more of the Device properties. The

second is oriented to subscription topics. Each segment of the topic (e.g Home/Printer/Status) is listed

in the pull-down corresponding to its position in the hierarchy. In addition if JSON keys are in the

payload then these can be selected as well (e.g. Wifi:{MAC:1234565789012,…} will include Wifi and MAC

in the two JSON selectors.)

Page 367

Figure 219 Association Tab

17.1.1 Filters to Restrict Number of Displayed Rows in Association Table

17.1.1.1 Accepted Associations
"Exclude 'O'bsolete and 'R'eject columns in Association table display for

selection of obsolete non-Displayed rows. When obsolete row is checked it will be

removed.

"Exclude 'H'istory and 'D'evice columns in Association table display for selection

of History filters for subscribed and published topics"

17.1.1.2 Rejected Selections
"Checked overrides the 'R'ejected checkbox on each topic to allow them to be shown

in Association Table"

17.1.1.3 Accepted Associations
"Checked hides all devices that have not yet been ‘A’ssociated from page"

Page 368

17.1.1.4 Outbound Selections
"Check to include HS Devices in Association Table to select for publication"

17.1.1.5 Inbound Selections
"Check to include received MQTT Topics in Association Table to select for HS

device creation"

17.1.1.6 Filter By Text
"Enter text pattern that must exist in some field of the MQTT records for records

that should be included in the Association Table. Simple text can used or regular

expression can be used with syntax <<xxx>>, <<REGEX(xxx)>> or REGEX(xxx)."

17.1.1.7 Filter Association Table by HS Device Categories
"Press to clear all device pull-down filters"

"Press to reconstruct all device pull-down filters"

17.1.1.8 Filter Association Table by Mqtt Topic and JSON Payload Key
"Press to clear all Topic/JSON pull-down filters"

"Press to reconstruct all Topic/JSON pull-down filters"

"Select Topic segment for the filter. Multiple items may be selected for 'OR'
condition. Reselect to remove from list. Select blank to remove all. Segment "

"Filter on JSON Segment Key # "

17.1.2 Associations Build/Display Control
Up to twenty rows of topics will be shown in the Association table. Previous, Next and Row locator

controls are provided to select the starting row of these twenty.

At the top of each column there are also sort buttons that affect the order of the topics presented.

Figure 220 Association Tab Build/Display Control

17.1.2.1 Show Selected Associations
"Press to show MQTT message and HS Device relationships based upon filters that

have been setup"

17.1.2.2 Prev/Next
"Association table is shown 20 rows at a time. Enter the starting row"

"Click to display previous 20 rows in Association Table"

"Click to display next 20 rows in Association Table"

17.1.3 Association Table Header
“Sort on Obsolete”

Page 369

“Sort on Reject”

"Sort on Express"

"Sort on Associate"

"Sort on Device Reference"

"Sort on Topic"

"Sort on Payload"

"Sort on History"

“Sort on Chart”

"Sort on Long Term"

"Sort on Last Date"

User entry is allowed in most of the columns of the Association table. Some of the entry options are

hidden until another entry is made on the same row to make these additional inputs options relevant.

The rows are color-coded. If green the topic is a subscription of inbound traffic. If pink it is HS Device

that will publish when it changes. If blue it is an existing HS Device that will be commanded by the

subscribed topic. The most used rows will likely be the green ones that will enable HS to have access to

MQTT topics published elsewhere.

The leftmost columns of the table contain three checkboxes. The most-often used with be the

“A”ssociate checkbox to establish an association between a MQTT topic and a HS Device. For the green

rows the “A”ssociate will create a HS Device and place the payload in the Device. Each update to the

payload will be reflected in the Device. It will also open publish text box that can be used to specify a

topic to be published when the HS Device has been commanded. Note that the UI for the command will

be based upon the payload received. If it is a number then a text box will be presented for number

entry. If it is something like On or Off then a two-state button will be presented. Other options are

available and these can be edited later from the Edit tab.

Following “A”ssociate on the pink rows the user needs to specify the publish topic. The Client Tab

default topic will be initially populated, but it can be changed. Since pink rows are existing HS Devices

there will be no new HS Device created.

The other two checkboxes “H”istory and “R”eject are used for filtering specification on a topic-by-topic

basis. Those tagged for “H”istory will be included in the History database. Those tagged for “R”eject will

not normally be shown later in the Association Table unless overwritten by a Show Reject checkbox

above the Association table.

The Ref column is the HS Device Reference number. It is a unique number of each HS Device. If the

topic/Device has been “A”ssociated then the Ref is shown as a button. When clicked the Edit tab will be

populated with the properties of this Ref Device. If a text box is shown then an existing HS Device Ref

number can be entered to be associated with the green row topic and this topic will then be used to

command the existing HS Device.

Page 370

Inbound payloads may not be in the desired format when used within HS. Regular expressions can be

used on the payloads before being stored in the Device Value or Device String. The first part of the

regular expression is the match pattern. The second part is a replacement pattern. A checkbox is used

to specify if the match is to be extracted or if it is to be replaced by the replacement pattern. Simple

manipulations are date format or command vs. period for decimal.

Figure 221 Association Table

17.1.3.1 O(bsolete)
"Check to remove obsolete topic from Association table and database"

"Click to delete all rows marked as obsolete"

17.1.3.2 R(eject)
"Check to remove topic row from page unless overridden by show rejected checkbox"

17.1.3.3 A(ccept)
“Check to associate new HS Device with MQTT Topic. If Topic is to be associated

with existing HS Device then use the Ref box to the right to enter the non-Plug-in

Device Reference."

17.1.3.4 E(xpress)
"Check to assign this Topic to Express mode where only update of HS Device will

occur. No other support such as event actions or history will occur in Express

mode."

17.1.3.5 H(istory)
"Check to include topic in history recording"

17.1.3.6 S(hort term)
"Check to include device in SQLite recording"

Page 371

17.1.3.7 L(ong term)
"Check to include device in InfluxDB, mySQL or MS SQL Server recording"

17.1.3.8 Ref(erence Number)
"Enter an existing HS Feature to associate this subscribed topic. This can be the
Ref of a non-plugin device or it can be the Ref of another mcsMQTT device to
associate multiple MQTT topics to the same HS device. If new HS device is to be
created then check the 'A' box"

"Click to populate Edit tab with this Ref and properties"

17.1.3.9 Pub: the following Topic on Device command
"Enter Topic published when HS commands Device"

17.1.3.10 Command HS Device on subscribed Topic:
"Received message Topic to command HS Device to change. Received Payload will be

the command"

17.1.3.11 Publish message on Device change using Topic:
"Substitutions are

$$NAME:,$$ROOM;$$FLOOR;$$COMPUTER:,$$INTERFACE:,$$INSTANCE:,$$TYPE:,$$ADDRESS:,$$C

ODE:,$$REF:, $$TASMOTACMND: and those in the payload list"

17.1.3.12 Encode Payload per template:
"Substitutions are

$$VALUE:,$$VALUE_EUROPE:,$$PREVIOUS:,$$PUBLISHED:,$$STRING:,$$STATUS:,$$LABEL:,$$V

SP:,$$PAYLOAD:,$$TOPIC:,$$DATE:,$$TIME: and those in status Topic list"

Page 372

17.2 MQTT Page Edit Tab
The Edit tab is the place where edits are made to existing MQTT-HS associations or where subscriptions

are manually defined. Manual entry is for case of the broker topics that start with “$SYS” as these are

not normally subscribed by mcsMQTT, if Topic Discovery is turned off on Client Tab, or if a message has

not yet been published but a HS relationship setup when it does get published.

Three tables exist on this tab. Normally one starts with the first one where they identify the Device or

the subscription topic that they desire to observe, edit or delete. Note that use of the Ref button on the

Association tab row will automatically fill the tables on the Edit tab and will bring up a new window that

will contain the Edit table associated with the device.

The second table is used to edit non-mcsMQTT HS Devices that are associated with MQTT topics. The

orientation is for publishing something when the HS Device changes as reflected in the pink coloration.

The third table is used to edit mcsMQTT HS Devices that were previously defined based upon a topic

subscription. The orientation is for changes in subscribed topic payloads as reflected in the green

coloration.

Changes in the tables will be retained in the mcsMQTT.db database. The Delete button will remove the

records from the database.

Figure 222Edit Tab Device Identification

17.2.1 Start Reference

17.2.1.1 Ref:
"Enter existing HS unique reference number (DeviceRef)"

17.2.1.2 Sub:
"Enter subscription topic. Use : for JSON keys."

17.2.1.3 Delete Sub and Ref
"Press to remove the subscription topic from database and referenced device from

HS"

17.2.1.4 Change association between HS Device Reference and MQTT Subscribe Topic
"Change the association between subscribe topic <…> and <…>. Enter either a new

subscribe Topic or a new non-Plug-in Device Reference."

17.2.2 Publish (Outbound)
The key to non-mcsMQTT Devices is the HS Device Reference number. This number cannot be edited,

but is used to identify the Device being edited. This is the same as the Ref in the first table on this tab.

Page 373

When this Device changes in Value or String content or appears in the Log then mcsMQTT will publish.

By default, the value change event will be used, but string change or log can be selected. When Value

Change is selected then publish will only occur if the DeviceValue changes. If Log is selected, then it will

occur on any update of the Device and the publish will be the DeviceValue. If multiple are selected then

multiple messages will be published. The publish topic can be static text (e.g.,

“MyHS/AtticSensor/Temperature/Centigrade”) that follows MQTT topic protocol. The topic can also be

specified using a combination of static text and replacement variables. An example may be

“$$COMPUTER:/$$ROOM:/$$NAME/Centigrade”. When substitution variables are used then the

substitution occurs before the topic is published so if the computer network name, Device Room

property and Device Name property are MyHS, AtticSensor, and Temperature respectively then the first

example will be published in both cases.

The Quality Of Service (QOS) and Retain flag defaults are setup on the Client Tab, but change changed

for particular messages. Normally a common QOS and Retain policy is employed and no editing is

needed.

It is possible that the existing non-mcsMQTT HS Device will be controlled by a MQTT topic. In this case

the subscription topic used for this control is entered for the subscribe topic. The payload in this topic

will need to comply with the CAPI (Control Application Program Interface) definition that exists when

the non-mcsMQTT Device was created. Normally text such as “On” and “Off” will be payloads for these

cases, but it is totally dependent on the HS Device expectations.

Two HS Device property fields are provided to facilitate editing of properties that are not normally

available via a browser. One is the grouping parent ref which is the parent Device under which Features

are organized. In essence these are the Association and Relationship properties.

If a Parent Device is being edited then the grouping text box can be used to list all the Child Features

that are to be grouped under this Parent Device. If a Child Feature is being edited then the grouping

text box is used to assign this Child Feature to a different Parent Device.

The second is the Interface property. Changing this to the name of the plugin will change the ownership

of the device. This mechanism can be used for mcsMQTT to take ownership of a Virtual Device or a

Device created by another plugin.

Page 374

Figure 223 Edit Tab Publish

Page 375

17.2.2.1 Existing HS Device Reference
"Enter existing HS unique reference number (DeviceRef) that is not a mcsMQTT

Device"

17.2.2.2 Grouping Parent Ref
""Enter grouping parent or comma-separated child references, negative value To

create New parent device, Or blank to remove from grouping."

17.2.2.3 Owning Interface
"Name of the plugin that has ownership. This is the interface property of the

device.")

17.2.2.4 HS Event Trigger
"Check to publish on DeviceValue change"

"Check to publish on DeviceString change"

"Check to use log event. This is used if Device update without a value change is

needed."

17.2.2.5 MQTT Publish (status) Topic

"Use semicolon to separate CSV topics. Substitutions are

$$NAME:,$$ROOM:,$$FLOOR:,$$COMPUTER:,$$INTERFACE:,$$INSTANCE:,$$TYPE:,$$ADDRESS:,$

$CODE:,$$REF: and those in the payload list"

17.2.2.6 MQTT Publish Payload Template
"Substitutions are

$$VALUE:,$$VALUE_EUROPE:,$$PREVIOUS:,$$PUBLISHED:,$$STRING:,$$STATUS:,$$PAYLOAD:,$

$PAYLOAD_EUROPE,$$TOPIC:,$$DATE:,$$TIME:,$$LASTDATE:,$$DEVICETYPE:,$$DEVICESUBTYPE

: and those in status Topic list"

17.2.2.7 URI Encode Payload
"Use URI encoding convention to encode special characters such as space, colon,

etc."

17.2.2.8 MQTT Publish to Sign
"Publish to Messaging Sign uses JSON encoding and API specific for sign. The

plug-in will format to this API when this radio is selected."

17.2.2.9 MQTT Publish QOS
"Select among the three levels of Quality Of Service"

17.2.2.10 MQTT Publish Retain
"Flag to send to broker to retain or not retain messages per MQTT protocol"

17.2.2.11 MQTT Publish Broker
"Select the broker to which the message will be published"

17.2.2.12 MQTT Subscribe (control) Topic
"Enter MQTT Topic that when received will command HS Device change"

17.2.3 Subscription (Inbound)
Subscriptions are keyed to the inbound MQTT topic. The first row of the third table and the first Edit tab

table will have the same topic populated. The association with a HS Device is normally done on the

Association tab.

Regular expression editing and publish topic editing is the same as on the Association tab row. The QOS

and Retain policies are the same as with other outbound publication.

Page 376

The status and shown in HS Devices is based upon the subscribed topic’s payload. If the payload is a

number, then that number will be shown for status. From HS Device Management a prefix or suffix can

be added if desired. HS normally appends a “Dim” suffix for most numbers.

For textual payload three options exist. For common two-state text of Off/On, Closed/Open, False/True,

Offline/Online, Inactive/Active, and Disarmed/Armed a button and graphic will be setup in Value-Status-

Pairs (VSP) of the HS Device. For other payloads that have been received with a single text string then a

button will also be setup with the second state being “Not xxx” where xxx is the received text. For other

payloads the VSP will not be used and the payload text will be placed in the Device String.

All of these default/automatic decisions can be edited by selecting a different Control/Status UI radio

button. The List type will create multiple value-status pairs. The Color Picker and ColorXY is used only

for published topics where a color selector is the desired control UI.

Different Payload states are observed and collected as Value-Status-Pairs until the Topic has been

identified as being a number via the Control/Status UI selection or until the max VSP text box entry

value has been reached. Up to twelve states are collected by default. This can be changed on the Edit

tab textbox for the Max VSP. When this number of entries has been exhausted then the other checkbox

determines the action to be taken. If unchecked the received payload is ignored. If checked and the

VSP limit has been achieved then an additional entry will be made with the HS Device Value of the max

limit and the status of Other. The payload will still reflect the last received text on this Topic.

The VSPs that have been observed in payloads can be edited by adding additional pairs or the value-

status relationship of the pair can be edited with the VSP box. There are four fields available. The first is

the text received in the MQTT Payload. The second is a number to uniquely associate the Payload text

to a value to be used in HS Device. The third and fourth are optional and if excluded will take on the

Payload text. The third is the text to be put on HS Device/Feature control. The fourth is the text to

show in HS for the status.

Four options exist to edit the VSP.

The first establisheds a Payload text to unique value relationship such as “label=number”. The label is

the payload text received via MQTT. Number is the numeric pair assigned to the label.

The second does the same as the first but also allows user to specify a different control text to be shown

on the control button or selector of the HS Device/Feature. This is done in the format

“label=number;control”. An example is “87WRTX=3;KitchenDoor” where 87WRTX is the MQTT payload

and KitchenDoor is what HS shows for the control. Figure 224 is another example where the received

Payload is upper case, but the Control will have mixed case spelling.

The third is an extension of the second where a different status text is used in HS than the text received

in the Payload. The format is label=number;control;status”. An example is “On=1;Open;Opened” where

“Open” shows on the control, “Opened” is shown for status when the received MQTT Payload is “On”.

The fourth removes a label where the syntax is to just enter the label. For example, “On” to remove the

VSP for the received Payload of “On”

The last redefines the entire VSP list with assignment of increasing numbers starting at zero. The syntax

in this case is a set of comma-separated labels such as “off, on, unknown” to assign off=0, on=1,

Page 377

unknown=2. The typical edit format that maps the Payload text “OFF” to the HS Device VSP of “Off” for

value 0 is shown in Figure 224.

Figure 224 Typical VSP Edit Syntax

HS Devices have a MISC property that affects how the control and status of the device operates.

Normally the radio button selections for control/status will set these to provide the desired operation.

If a change is needed then they can be made here.

Normally subscription associations create a mcsMQTT HS Device. This can be modified to associate the

subscription with a non-mcsMQTT HS Device and if it is done then the mcsMQTT device will be deleted.

This relationship between subscription and non-mcsMQTT device is the same as can be done from the

second table on this tab.

HS maintains a database to record energy utilization. It will accept the Watt consumption or production

over sensed periods of time. To utilize this database the HS Energy Database row of the Edit tab is used.

The preferred source is a total energy sensor source. The plug-in will handle a daily energy sensor as

well, but energy consumed between the last sample of prior day and midnight may introduce minor

variance, depending upon the frequency of the sensor’s sampling and reporting.

The Control/Status UI selection determines how mcsMQTT processes the payload and how information

is made viewable. Text is stored in DeviceString. Button, Toggle and List will create Value Status Pairs

(VSP) where the status is rendered as text while DeviceValue is used to identify each of the text

enumerations. List can grow as new payload text is received. Button text is static once associated with

HS Device Feature.

Various forms of color space processing are provided. These are Color Picker, RGB, RGBW, HSB and

color XY. The general strategy is to convert from the client’s color space to the HS RRGGBB color space

with the numeric value stored in DeviceValue. ColorXY is for a client that uses XY color space. Zigbee

often uses it. JSON is normally used. RGBW is expecting comma-separated decimal values for R, G, B

and W. HSB will typically be JSON values for each parameter. Because of all the different client’s

representation of color space there are many special-case situations.

Numbers are shown as text boxes or as sliders with Number, Number Change, and Slider selections.

Jpg File will store binary data from payload. If base64 encoded, then it will be converted to raw binary

before storage into the jpg file.

Page 378

CSV is expecting a comma separated list of numbers and each will be handled as separate HS Features if

associated.

Sign contains the formatting for the LED Matrix Sign described in Section 20.19 .

Ramp is a slider to which a change filter is applied to control the rate at which a DeviceValue will change.

Page 379

Page 380

Page 381

Figure 225 Edit Tab Subscribe

17.2.3.1 MQTT Subscribe Topic
"Elevate to treat as part of topic to establish uniqueness of message. The value
contained in the payload will be added as a level to topic and all members of the
JSON group will be children of it."

17.2.3.2 Payload RegEx Match Pattern
"Enter regular expression match pattern to be used on received payload"

17.2.3.3 Payload RegEx Replace Pattern
"Enter regular expression replace pattern to be used on received MQTT Payload"

17.2.3.4 Payload RegEx Operation
"Extract or Replace of Regular Expression on received MQTT Payload before storing

in HS device"

17.2.3.5 Subsample Min Seconds
"Subsample to reduce the processing burden of high-rate data. Number specified is

the minimum number of seconds since last message before accepting a new one from

the same topic"

17.2.3.6 Low Pass Filter
"Smooth payload value using low pass filter with sensitivity ranging from 0.00 for

payload ignored to 1.00 for no smoothing"

17.2.3.7 Expression
"Numerically transform payload (e.g. $$PAYLOAD: * 2.54 to convert centimeter to

inches). Use replacement variables, math operators and functions."

17.2.3.8 Add Rate or Extra Device
"Select between no rate/extra device, creation of a new device, or use an existing

device."

“Use and existing HS device to allow a different expression to be used when

updating this additioinal HS device.”

"Set rate sensitivity with value between 0.00 for no rate change to 1.00 for

change based only on last two samples"

“Select units for rate of change”

17.2.3.9 Add Accum Device
"A device that sums the payload can be created independent of the payload device"

"Select between no reset, accumulate totals since midnight, or accumulate change

since midnight"

17.2.3.10 Payload Store
"Normally only Control/Status of Text will store payload in DeviceString. Others

in DeviceValue. This can be overridden for non-Text types with this setting so

DeviceValue is not updated, but DeviceString will contain the Payload. For the

case of null payloads, the null value can be stored in the DeviceString or it can

be used to trigger sending current Device Status."

Page 382

17.2.3.11 HS Device Publish Topic
"Substitutions are

$$NAME:,$$ROOM:,$$FLOOR:,$$COMPUTER:,$$INTERFACE:,$$INSTANCE:,$$TYPE:,$$ADDRESS:,$

$CODE:,$$REF: and those in the pub payload list"

17.2.3.12 HS Device Control/Status UI
"Identify how UI control will be shown on HS Device. Button and List are for VSP
mappings that update DeviceValue and show DeviceStatus text. Number, NumberChange
and CSV are for DeviceValue updates. RGB, HSB and ColorXY are for color wheel
that use DeviceValue. Text is for DeviceString updates. Sign is for data send to
messaging sign. Jpg File is to store binary data from Payload into file of type
.jpg."

17.2.3.13 Device Type API
"Select the Device API type for the Device or Feature"

"Select the Device API subtype for the Device or Feature"

17.2.3.14 HS Device Location
"Loc2 (Floor) where this HS Device placed.”

"Loc (Room) where this HS Device placed.”

“Name to be used for the HS device."

17.2.3.15 HS Device VSP List
"VSP are collected based upon Payload data. This can be a large number if the
payload does not represent state data. This setting determines the max number to
be remembered"

"Check if all undefined VSP, that occur after max limit is reached, are assigned
to Max Value with HS status of 'Other'.

"Value status pairs (VSPs) are the values, controls and statuses visible on the
device's Status Graphics tab in the Device Management page of HS. The syntax for
entry is PayloadText=Number;Control;Status where PayloadText comes from MQTT
Message and Number, Control and Status are what is used in HS. PayloadText will
be used for HS Control and Status unless other text is provided.
Five edit formats are supported.
1: text=number (e.g. On=1) syntax to specify or overwrite a specific entry.
2. text=number;control (e.g. Closed=0;Close).
3. text=number;control;status (e.g. off=0;Close;Closed)
4: text alone (On) to delete it.
5: comma-separated list (e.g. Off,On) to define full VSP list numbered starting at
0."

"Click to clear previously defined VSP definitions"

17.2.3.16 HS Device MISC Properties
"Check to set MISC property"

17.2.3.17 Grouping Parent Ref
"Enter grouping parent reference, negative value to create new parent device, or
blank to remove from grouping"

Page 383

"Click to create a new mcsMQTT device that will serve as a parent for this and
possibly other devices in group"

17.2.3.18 Publish Payload Template
"$$label:, $$status:, $$vsp: (default if blank) for text and $$value: for number

are typical for CAPI, view Publish Topic & Payload for other substitutions"

17.2.3.19 Publish QOS
"Select among the three levels of Quality Of Service"

17.2.3.20 Publish Retain Flag
"Flag to send to broker to retain or not retain messages per MQTT protocol"

17.2.3.21 HS Energy Database
"Enter energy sensor that provides readings in Watts. Plug-in will compute the

delta usage since last sensor report to store in HS Energy database."

17.2.3.22 Database Hysteresis
"Minimum change in value between consecutive entries stored into long term

database. Use negative values to disable the hysteresis filter override."

17.2.3.23 Tag Field
"Free form input field to record notes or othre information that can then be later
retrieved using $$TAG: replacement variable"

17.2.3.24 Control non-Plug-in HS Device
"If associating subscription topic with an existing non-Plug-in device then enter
the existing Device Ref otherwise leave blank"

Page 384

17.3 MQTT Page Client Tab

Figure 226 MQTT Broker Connection Settings

The dominant MQTT protocol in use is version 3.1.1 while the updated standard 5.0 has been available

for several years. Clients using 5.0 can interact with clients that uses 3.1.1, but legacy clients will not be

able to communicate with clients using 5.0.

The Broker can accept an anonymous connection or it can be with a username/password protection.

Additional security is with encryption with certificates identified used to decode the encryption.

mcsMQTT is a client and provides a default ID of mcsMQTT on <hostname>, but this can be edited if

desired.

17.3.1.1 MQTT Client ID
"mcsMQTT Client ID to uniquely identify mcsMQTT as the source of message. Separate

multple with semicolon."

17.3.1.2 mcsMQTT LWT Topic
"Last Will and Testament topic given to broker by mcsMQTT. Broker publishes the

topic when mcsMQTT appears to have disconnected. Payload will be 'Offline'."

17.3.1.3 MQTT Protocol
“Select MQTT communication protocol version to be used by mcsMQTT for Broker.”

17.3.1.4 MQTT Broker Connection
"Check to disconnect from MQTT Broker and no longer subscribe"

17.3.1.5 Reset MQTT Statistics
"Use button to reinitialize receive statistics to facilitate specific time

measurements"

Page 385

17.3.2 Inbound (Subscription) Management
MQTT has bidirectional communication. Messages published by others can be subscribed by mcsMQTT

and is considered inbound from mcsMQTT’s perspective. Normally mcsMQTT will listen to all messages

delivered by the broker. This makes it easier for user selection of the topics of interest. If this feature is

not desired for performance or simplicity reasons then the discovery of published topic can be turned

off. Similarly, if a stable configuration exists and there is no desire to receive any new topics then new

topic discovery can be turned off.

When only specific topics are desired then the topic discovery template is defined using a comma

between each pattern is used. For example, if subscribing to “HS” or “HS3” topics then the template

would be specified as “HS/#,HS3/#”.

Normally mcsMQTT will not subscribe to topics that it publishes. If there is a need to receive published

messages then it can be turned on.

mcsMQTT will treat payloads in one of three manners. One is to place it into a HS Device String or

Device Value depending upon it being numeric. If the payload is JSON-encoded then it can expand to

topic to include the JSON keys and the Device Value or Device Sting will be populated with only that one

JSON element value. The third option is to create a parent HS Device and then children devices with the

decoded JSON items in each of the children.

IOT devices many be removed from one’s location or there may be some experimenting that resulted in

Topics being discovered that will never be used again. To remove the clutter of obsolete Topics a

provision exists to remove them from the database. This can be done on individual Topics or on a group

identified with wildcard characters. See Section 4.1.26. Also note the obsolete unassociated on

shutdown on the General Tab that will remove all unassociated topics that accumulated during the

session.

Another approach to excluding topics is with the Reject mechanism. This can be done on a topic-by-

topic basis on the Association tab or can be done based upon the reject Topic template on the Client

tab. The template to prevent discovery is processed at the time of message reception and considers

only the Topic. Its use is not as desirable as changing discovery to only update associated messages, but

will consume fewer resources than the individual reject checkboxes.

In the singular case and reject templates will only hide the Topics from the Association table. the

messages are processed, but just not visible on the Association tab. The Reject done using a Reject

Topic template will firewall the message and no record of the message will be retained.

There are some MQTT clients that send messages with the retained flag set. This means that every time

mcsMQTT starts it will receive these retained messages from the Broker. If these Topics are no longer of

interest, then they can be removed from the MQTT Broker’s database using a wildcard template (i.e.,

with +, * and #) or individually specified. When using this capability, the message will be removed from

the MQTT Broker database andif it has not been associated with a HS Device then also removed from

the mcsMQTT database. If the Topic is again sent through the Broker, then it will be restored to the

databases.

Page 386

On lower power processors it may be desirable to manage the processing of inbound MQTT traffic. This

is especially significant following startup when the broker may have a large number of topics that it will

burst to mcsMQTT. Received messages are placed in a queue and the queue is worked-off based upon

the depth and delay parameters. Normally no special provisions are needed to manage the queue.

17.3.2.1 Topic Discovery
"Discover listens for all (#) topics otherwise subscribe to only Associated

topics. Separate each topic by comma. + and # wildcard symbols are honored.

17.3.2.2 Inhibit Topic Discovery
"Prevent new topics from being discovered"

17.3.2.3 Subsample Topic Templates
"Enter set of semicolon-separated topic templates to be subsampled with interval

specified below. MQTT wildcard symbols +, * and # can be used to identify Topic

range. For example, 'test/topic/#' will reject all Topics that start with

'test/topic'. Reject template applies only to Topic and does not consider

anything in the Payload.”

17.3.2.4 Subsample Min Seconds
"Subsample to reduce the processing burden of high-rate data. Applies only to

topics that match the subsample template above. Number specified is the minimum

number of seconds since last message before accepting a new one from the same

topic."

17.3.2.5 Enable Auto Device Creation
"Specific topics including shellies/#, wled/#, and other devices will

automatically create HS devices when received."

"Specific topics advertised by Tasmota.Discovery or Homeassistant/../config topic

will automatically create HS devices when received."

17.3.2.6 Wildcard Plugin Auto Associate Template
"Enter topic template for auto-association of plugin devices. When not blank and

a topic that matches template is received then HS device(s) will be automatically

created with publish topic set to the Default Topic Template and Default Payload

Template (e.g. +/Tasmota/# for any topic that is Tasmota in the second position)."

17.3.2.7 Wildcard Non-Plug-in Control Template
"Enter template for auto-association of non-plug-in devices with topics using

$$REF: for device reference (e.g. HS/$$REF:/cmnd)"

"Must define an subscribe wildcard template and publish topic template before auto

association can be done"

17.3.2.8 Default HS Device Location
" If default is selected then all new associations will be placed in the same HS

Loc2 (Floor) and Loc (Room), otherwise the location will be based upon the MQTT

Topic."

"Loc2 (Floor) name where all new Associations will be placed"

"Loc (Room) name where all new Associations will be placed"

Page 387

17.3.2.9 Default Name Property
"Selection affects the update of the Last Change property. Options are to always
change it when any value Is written to a device or to only change it if the
written value changes."

17.3.2.10 Default Misc Property
"Selection affects the update of the Last Change property. Options are to always

change it when any value is written to a device or to only change it if the

written value changes."

17.3.2.11 Default HS Parent Device
"If default is selected then parent HS device will be based upon the MQTT topic

hiearchy, otherwise the newly created feature will be the child of the specified

device reference number."

"Device reference number that will be parent device of newly created feature"

17.3.2.12 Echo
"Identify if need to have transmitted topics to be wrapped around and seen as

potential subscription topics"

17.3.2.13 Express Mode
"This setting defines the default setting for the Association tab 'E'xpress column

checkbox. Full support or Express. When a Topic is associated then the 'E'

checkbox will be set to this default option."

17.3.2.14 Express Mode Features
"If Payload is JSON-encoded then decode into separate HS devices rather than

storing payload in DeviceString"

"If Edit tab has been definded payload to be color picker, button, or list then

convert payload to DevcieValue rather than storing in DeviceString"

"Regular and arithmetic expressions will be included to transform received

payloads before storing in HS Device"

"Ability to trigger an event or generate a script callback based upon a received

Topic"

17.3.2.15 Reject Topics
"Enter set of semicolon-separated topic templates to be rejected from

subscription. MQTT wildcard symbols + and # can be used to identify Topic range.

For example, 'test/topic/#' will reject all Topics that start with 'test/topic'.

Reject template applies only to Topic and does not consider anything in the

Payload."

17.3.2.16 Receive Queue Depth
"Enter maximum number of received messages to be processed immediately"

"Enter maximum depth of the receive queue"

17.3.2.17 Receive Queue Interval
"Enter number of milliseconds to wait to process received messages when queue is

above 'queue depth' threshold"

Page 388

17.3.3 Outbound (Publish) Management
mcsMQTT will publish topics when HS Device(s) change, as a result of an Event action or from a script.

The topic to be sent is user-specified on a case-by-case basis, but if there is a standard format that is

being used for publish topics then this format can be specified in a template with substitution variables.

These variables will then be filled out at the time the topic is published. The substitution variables

available are $$NAME:, $$ROOM, $$FLOOR, $$COMPUTER:, $$INTERFACE:, $$INSTANCE:, $$TYPE:,

$$ADDRESS:, $$CODE:, $$REF:, $$VALUE:, $$VALUE_EUROPE:, $$STRING:, $$STATUS:,$$LABEL:,

$$VSP:,$$PAYLOAD:,$$TOPIC:, $$DATE:, and $$TIME:.

The same substitution variables are available for published payloads. If not specified then the payload

will be Device Value if numeric, Device String if non-numeric or a CAPI value or label if commanding a

mcsMQTT Device.

Expressions can be used in the template by encasing the expression in “<<” and “>>”. Nesting

expressions to two levels is supported. A typical JSON template with an expression is

‘{“Brightness”:<<ROUND($$VALUE*255/100,0)>>}’ where the expression produces an integer in range of

0 to 255 based upon an input in the range 0 to 100.

The templates here are setup as the defaults. Individual topics can later be specified that vary from the

templates. Templates do not need to be defined, but only exists for those who have a large number of

topics to publish and desire to standardize on the structure.

MQTT protocol provides for Quality Of Service and message retention on a topic by topic basis. Just as

payloads can have a default template, the same is true for these attributes. They can later be changed

on a topic-by-topic basis.

Normally MQTT messages are published only when something changes. They can be setup to

periodically publish to assure that subscribed clients contain current information. Note there is a

redundancy between QOS/Retain and the periodic status reporting.

For users that have a large number of Devices and infrequent addition to the set then it may be

desirable to reduce CPU burden and not enumerate all the devices each time mcsMQTT starts. A button

is provided for this alternate mode of enumeration.

Provisions exist to support LED Messaging Sign described in Section 20.19. If information from the HS

Log is to shown on the screen, then the Sign Log radio is set to enable it. It is likely that a subset of

everything going to the sign is all that is desired. The Regular Expression that is applied to the Log type

field is used to select the desired subset.

17.3.3.1 Default Topic Template
"Blank for computer/plug-in/location/name or formatted text including substitution

variables"

17.3.3.2 Default Payload Template
"Blank for Device Value/String or formatted text including substitution variables"

17.3.3.3 Default QOS
"Select among the three levels of Quality Of Service"

Page 389

17.3.3.4 Default Message Retain
"Flag to send to broker to retain or not retain messages per MQTT protocol"

17.3.3.5 Multiple Payload Message Delay
" Enter number of seconds between each message when multiple messages are
specified in Publish Payload Template."

17.3.3.6 Publish Periodic Status
"Enter number of minutes between periodic status reporting. 0 to publish only on

status change."

17.3.3.7 URI Encode Topic
"Spaces are not recommended in topics, but are legal. This option will send the

space as ' ' or '%20'. URI encoding applies to all special characters and not

just space."

17.3.3.8 Publish HS Device Changes
"Normally MQTT messages are published based upon explicit associations between a
HS Device and a MQTT publish topic as shown in Association tab. This option
removes the need for explicit associations. It allows all Device changes to be
published or only non-plugin Device changes. The default topic and payload
templates are used to form the Topic and Payload in this case."

17.3.3.9 Publish non-MQTT Sources
‘Interfaces that get their data by means other than MQTT such as serial or HTTP
responses will typically be have a pseudo MQTT Topic assigned and processed as if
it was received via MQTT. These messages can be internally processed or can be
published through the first MQTT Broker. The later case is used when non-HS
clients also desire access to these messages.”

Page 390

17.4 MQTT Page Broker Tab
Each MQTT environment needs a MQTT Broker and this is normally the internal Broker built into

mcsMQTT or an external one such as Mosquitto. The Broker can be identified by network name or IP

address. The internal Broker is always 127.0.0.1. It normally uses port 1883 or 8883 if secure

connection is established.

If the internal Broker is used, then two options are available as to how it should handle the retained

messages. At shutdown it can save the retained message information and then restore it at startup.

This is the standard method such as is used by Mosquitto Broker. It can also discard them and start

fresh to accumulate retained message information on next start. This is the implementation used by

Home Assistant.

Note that the MQTT Page, Client Tab, Inbound Management Section provides a means to remove

retained messages from any Broker on a wildcard or topic-by-topic basis.

Statistics maintained by the internal Broker are visible for all MQTT clients that are using this Broker

such as shown in Figure 227. The client is the reference so the “Send” columns reflect the MQTT

messages published by the client. The “Time” column reflects the last time the message transaction

occurred. The current day is assumed unless an explicit date is shown in the table. Clients that are no

longer connected to this Broker drop off of the table

Page 391

Figure 227 MQTT Broker Tab

Page 392

17.4.1.1 MQTT Internal Broker Operation
"When using the internal MQTT Broker the option exists to save retained messages

on shutdown and then restore them on restart. This is standard operation for MQTT

Broker. The other option is to only persist retain messages for those that are

received since a restart."

"Use button to get current Internal Broker client list and statistics."

17.4.1.2 MQTT External Broker Name or IP Address
"MQTT Broker (e.g. Mosquitto) network name or IP address. Separate multiple

brokers IP address with semicolon. If left blank then mcsMQTT will spawn its own

internal MQTT Broker unless “No Internal Broker” is selected."

17.4.1.3 External MQTT Broker Port
"Optional if port other than 1883 is being used by Broker. Separate multple ports

with semicolon."

17.4.1.4 External MQTT Broker Security
"Select the communication security used by the Broker"

17.4.1.5 External MQTT Broker caCert File
"Enter full filename path for caCert used by each Broker. Use semicolon to

separate broker’s file paths"

17.4.1.6 External MQTT Client Cert File
"Enter full filename path for Client Certificate. Use semicolon to separate

broker’s file paths"

17.4.1.7 External MQTT Client Key Password
“Enter password for Client Key Certificate"

17.4.1.8 External MQTT Broker Username
"Optional username expected by MQTT broker is this security implemented by broker.

Use semicolon to separate brokers usernames."

17.4.1.9 External MQTT Broker Password
"Optional password expected by MQTT broker is this security implemented by broker.

Use semicolon to separate brokers passwords."

Page 393

17.5 MQTT Page General Tab
The General tab contains settings that are generally one-time edits to configure mcsMQTT to a user’s

environment. General configuration information is retained in \Config\mcsMQTT.ini. In the mcsMQTT

Management header the version of the plug-in that is running is visible.

Page 394

Page 395

Figure 228 mcsMQTT General Settings

17.5.1 Beta Updates
mcsMQTT is released through the HS Updater and often has updates available as new features are

added and fixes are incorporated. These delta or beta updates can be installed using the “Install Beta

Update” button at the top of the General Tab. In the same area, the currently installed version and the

available beta version are visible. An update by this mechanism requires that the plugin has access to

the local HS web server. This access can be restricted if the user’s HS Setup/Network checkbox has PW

required setting. In this case the user needs to provide the username:password or disable the HS Setup

setting to require login on the LAN.

A second method where mcsMQTT is not allowed to access HS web server is to start the update using

the button on the General Tab and then manually use the HS Plugins page to stop mcsMQTT. Within a

minute-or-so the update should be complete and mcsMQTT can be restarted again from the Plugin meu.

A third method to install these updates manually with the links to the updates at

https://forums.homeseer.com/forum/hs4-products/hs4-plugins/lighting-primary-technology-plug-ins-

aa/mcsmqtt-michael-mcsharry-aa/1498637-mcsmqtt-change-log-hs4-hs3 .

The update is performed by launching the executable UPDATEPLUGIN.exe. This helper looks finds the

process ID of HSPI_MCSMQTT.exe, sends a request to HS to shutdown mcsMQTT, waits for the process

ID to disappear, copies the beta files from site mcsSprinklers.com, copies them into the desired

locations, sends request to HS to start mcsMQTT.

It produces a trace file in subfolder \Data\mcsMQTT\UpdatePlugin.Trace. A normal update will have

something like below in this file

6/2/2024 1:39:05 PM UpdatePlugin Found HSPI_MCSMQTT in process 52260

6/2/2024 1:39:07 PM UpdatePlugin GetHSPluginList PluginIndex.Count=12

6/2/2024 1:39:07 PM UpdatePlugin Plugin Command ?enabled_5=unchecked

6/2/2024 1:39:16 PM UpdatePlugin SubPost Return:

["installed_interfaces","\u003cform

:

:

n\r\n\r\n\u003c/form\u003e\r\n\r\n","PAGE_refresh","true"]

6/2/2024 1:39:53 PM UpdatePlugin CPUuse 46692

6/2/2024 1:39:53 PM UpdatePlugin Successful Update

The second approach to update will work because UPDATEPLUGIN.exe is just waiting for the

HSPI_MCSMQTT.exe to disappear to allow it to continue to update the files. There is a timeout so if

mcsMQTT is not stopped within 30 seconds then the update will not occur.

17.5.2 Debug
There are three locations where mcsMQTT provides user feedback. One is on the browser with alert

boxes when a user entry is not valid. The second is the HS Log when significant errors are detected. The

third is in file \Data\mcsMQTT\mcsMQTT_Debug.txt. This third location will always contain some

information related to the startup and timing. Additional debug information is included when the

General Debug checkbox is used. Some of the debug data is voluminous or chatty so could result in a

https://forums.homeseer.com/forum/hs4-products/hs4-plugins/lighting-primary-technology-plug-ins-aa/mcsmqtt-michael-mcsharry-aa/1498637-mcsmqtt-change-log-hs4-hs3
https://forums.homeseer.com/forum/hs4-products/hs4-plugins/lighting-primary-technology-plug-ins-aa/mcsmqtt-michael-mcsharry-aa/1498637-mcsmqtt-change-log-hs4-hs3

Page 396

large debug file. This data can be selectively excluded with checkboxes. In general, they should be

checked unless debugging topics specific to their content.

Access to the debug file can be achieved by navigating to the folder where it is stored or it can be

uploaded to the Browser’s standard upload folder (typically …\Downloads on Windows) in a compressed

zip format.

17.5.3 Topic Volume Management
In some systems much MQTT traffic exists and mcsMQTT default behavior is to collect and make visible

everything that it sees. This can result in large and unwieldy operation. Various facilities are provided

to manage the large amount of data.

17.5.4 Backup
The configuration information that relates to specific MQTT topics is maintained in an SQLite database

at \Data\mcsMQTT\mcsMQTT.db. The database is backed up every time the mcsMQTT starts which will

normally be each time HomeSeer starts or when an update is installed.

mcsMQTT provides a backup facility to protect its integrity and has extended it to allow a user to do a

daily backup of any folder they desire. A backup can be done with a full backup every day or it can be

done as a delta backup from the prior day. In either case a full backup is done on the number of days

interval specified by the use.

If no backup folder is specified then no backup is one with the assumption that the user has other

means to create a backup of the user data. If a backup folder is specified the mcsMQTT will backup in a

compressed zip format all files that are necessary to restore user data so mcsMQTT can function from

the backup. This includes all the \config, \data for HS and mcsMQTT, and \script subfolders of HS. It

does not include other paths such as those used by external databases.

It is also possible to backup other folders using this mcsMQTT feature if the path to the folder is

specified. Semicolons are used if multiple additional backup paths are desired. Note that if an external

database is to be backed up then the facility provided by MySQL, MS SQL Server, or InfluxDB should be

used to assure the integrity of backup is maintained.

Backups can be in either of two formats. In both cases a “.zip” file is created for the top-level folder that

is being backed-up. In one case all the files are included. In the other case only the files that have

changed are backed up. It is a tradeoff between ease of restoration vs. space required to perform a

backup. A full backup is done on the interval specified by the user. The incremental backup is done

otherwise. To restore an incremental backup, one needs to copy all files changes from the backup since

the last full backup. If backup storage space and CPU utilization to perform a backup are not limiting

factors then a daily full backup can be done and restoration is simply to restore from the day of last

known desired operation.

mcsMQTT collects CPU utilization information for HS and pluigns and these can be associated with HS

devices. These devices will also have controls to stop, start and restart HS or plugin. To perform the

plugin control, it is necessary to get access to the HS web server. The default setup for HS is to not

require login on access to HS from LAN. If a user changes this to require a login, then mcsMQTT will also

need to know the login credentials for stop, start, restart control of the plugins. This is provided in as

the password for the user ‘default’ or in fomat ‘username:password’ for other users.

Page 397

17.5.4.1 LAN user:pw PW for Plugin Control
"This setting is only needed if LAN access to HS has been modified on HS Setup
page to require password on Local login. Access to HS server is needed to perform
individual plugin start, stop, restart control. If only password is entered then
assumed user account is 'default', otherwise enter both username and password with
colon separator (e.g. name:pw). Enter the password for this user login."

17.5.4.2 HS Device Discovery
"Enumeration makes HS Devices visible on Association table for ease of associating

HS Devices with MQTT Topics for publishing"

17.5.4.3 HS Device Enumeration
"Use button to refresh HS devices listed in Association table"

17.5.4.4 Publish HomeAssistant Discovery
"Use button to publish associated non-plugin devices discovery information using

HomeAssistant discovery protocol"

17.5.4.5 Obsolete Topics
"Enter a topic to be removed from mcsMQTT database. If Topic is again received it

will be restored to database. MQTT wildcard symbols + and # can be used to

identify Topic range, but be careful. For example, 'test/topic/#' will remove all

Topics that start with 'test/topic'. To remove a Topic with JSON payload then use

at end of Topic."

17.5.4.6 Remove Retained at Broker
"Remove a set of topics from MQTT Broker database that may be retained and if not

associated also remove from the mcsMQTT database. If Topic is again received by

the broker with the retain flag it will be restored to its database. MQTT

wildcard symbols + and # can be used to identify Topic range, but be careful. For

example, 'test/topic/#' will remove all Topics that start with 'test/topic'.

Individual JSON payload keys cannot be removed. All payload keys in the Topic

will be removed."

17.5.4.7 Obsolete Unassociated Topics On Shutdown
"Remove topics that have not been associated to improve startup performance.

Where there are a large number of records collected during a session that are of

no interest then statup performance will suffer."

17.5.4.8 Receive Topic Warning Threshold
"Enter the max number of Association Table records that will be accumulated before

warning received. Oldest unassociated records will be removed to reduce size to

150% of max value.

17.5.4.9 Debug File at \Data\mcsMQTT\mcsMQTT.txt
"Check to generate debug output in \data\mcsMQTT_debug.txt"

"Check to inhibit the data download from Cloud servers being included in the

debug"

"Check to inhibit the data showing event callbacks (e.g. device value changes)

being included in the debug"

"Check to inhibit expression evaluation data in the debug"

Page 398

"Check to inhibit notification of a HS device being blacklisted from MQTT event

evaluation"

"Use button to upload the debug file in zip format. It will go into standard

downloads folder.

17.5.4.10 Configuration Backup
"Config, Data (HomeSeer and mcsMQTT), and script HS subfolders will be copied at

midnight to a newly created folder in the specified path. Backup can be used to

restore to a prior setup.

17.5.4.11 Path(s) to Additional Source Folder(s)
"Full path of other folders that should be included in backup. If multiple then

separate each with semicolon."

17.5.4.12 Days Between Full Backup
“Backup will occcur daily and save files that have changed since the prior day.

An unconditional backup will occur on the interval of days specified. If one

desires a full backup every week then enter 7. If a full backup every day, then

enter 1"

Page 399

17.6 MQTT Page Sign Popup
The Messaging Sign popup illustrated in Figure 229 is shown when the “Configure Sign Parameters”

hyperlink is clicked. This hyperlink is located on the Edit Tab/Popup when the Sign has been selected for

use.

The Message Sign is a LED Pixel matrix described in Section 20.19.

Figure 229 Sign Properties Configuration Popup

17.6.1 Sign Display Row
"Enter row (top=1) of sign where the message will be shown"

17.6.2 Message Duration (minutes)
"Duration of 0 is to remove from sign. Duration of 65535 is until manually

removed. Others are number of minutes to show message."

17.6.3 Text Color RRGGBB
"Select color that is default for message. Color can be changed on a character-

by-character basis using [RRGGBB] encoding in the message text."

17.6.4 Default Text Payload
"If DeviceString is null then the text entered here will be used for payload when

topic is published. This included both Text and Image."

17.6.5 JPEG Image Scaling %
"The JPEG image will be scaled to the percentage of screen size entered. Values

between 100 and 200 are reasonable. If the image is too large to fit the sign

then automatic reduction will be done."

Page 400

17.7 MQTT Page Edit Popup
The Edit popup is an alternate means to edit the properties of associations. The popup window is

displayed when the Ref button or row sequence number on an Association Tab row is clicked. One table

will be shown depending upon if the row is associated with a Plug-in Device or a Non-Plug-in Device.

Page 401

Figure 230 Edit Popup Window

Page 402

17.8 MQTT Page PubList/Sign Tab
The publication lists are a set of Topics and Payloads that are contained in text files of type “.pub”

located in folder \Data\mcsMQTT. These files can be manually created and edited outside of mcsMQTT

or interactively with the browser on this tab. When using the MQTT Page, Publish/Sign Tab editor, the

first four rows are the substitution variables $$1:, $$2:, $$3: and $$4:; and the remaining rows are the

Topic=Payload assignments.

If the contents of publist entry contains a “=” then it needs to be escaped with “\=” because mcsMQTT

uses the “=” to separate the URL querystring from the data that is sent with POST and PUT methods. An

example is shown in Section 12.10.

17.8.1 Publication List
The set of “.pub” files that exist can be selected from the pull-down, lines edited if desired, and then the

group published via the Execute Publication List button. Prior to publication substitution variables are

applied if they are setup.

Figure 231 Publication List and Sign Setup Tab (Publist)

17.8.1.1 Select Existing Publication List
"Select file that contains the list of messages to be published"

17.8.1.2 Create New Publication List
"Publication list file contains a list of topics and payloads that can be

published on command"

17.8.1.3 Substitution for $$1:, $$2:, $$3:, $$4:
"Topics and payloads can have substitution variables that are replaced prior to

publication"

17.8.1.4 Execute Publication List
"Press to publish list of messages"

Page 403

17.8.1.5 List
"Each row contains one message in format Topic=Payload and can contain $$1:, $$2:,

$$3: or $$4: substitution variables"

17.8.2 Sign Use Setup

Figure 232 Publication List and Sign Setup Tab (Sign Setup)

17.8.2.1 Image File Change
"jpg images can be sent to the LED Messaging Sign when an identified file path has

changed. The file path being monitored is setup on the Client tab."

17.8.2.2 Image File Path
"jpg file or folder in which it is located that will be monitored for change in

last modified date and then sent to LED Messaging Sign as a jpg image."

17.8.2.3 Image Pan Rate
"Panning is performed by sign by shifting all pixels up/down/left/right one pixel

at a constant rate. The entry is the number of milliseconds to wait between each

shift. Resolution is 50 milliseconds."

17.8.2.4 Log Event
"HS Log can be sent to messaging sign using the publish topic for this device.

They will retain the color of message in log. Regular Expression filter on Client

tab filters the type field of the message that will be sent to sign."

17.8.2.5 Log RegEx Filter
"Regular Expression to select the subset of HS log entries that will be sent to

messaging sign."

Page 404

17.8.2.6 Text Scroll Rate
"Scrolling is performed by sign by shifting all characters of a row left one pixel

at a constant rate. The entry is the number of milliseconds to wait between each

shift. Resolution is 50 milliseconds."

17.8.2.7 Text Dwell Rate
"When multiple messages are to be shown on a Sign's row each will be shown in

round-robin sequence. The duration in seconds that a message will stay on sign

before showing the dwell time."

17.8.2.8 OWM API Key
"Open Weather Map free API key is used by Sign to show five-day forecast when no

other information is being shown on last row of sign. If not provided then no

forecast will be downloaded and shown by Sign."

17.8.2.9 Clear Sign
"Button is used to clear all twelve message buffers by setting their duration to 0

in the Sign."

Page 405

17.9 MQTT Page History Tab
History Tab contains data collection criteria in either the external long term or SQLite short term History

databases. It also contains ability to query these databases based upon filter criteria.

17.9.1 Long Term History (InfluxDB, mySQL and MS SQL Server)

17.9.1.1 Network Database
"Select the database to which long term data will be placed."

17.9.1.2 IP of External Database
"Network address of the Database server. Default InfluxDB port is 8086. If a

different port is being used then enter it with IP:Port format"

17.9.1.3 Bucket/Database Name
"Name of the bucket or database repository. Default is MQTT."

17.9.1.4 Measurement/Table Name
"Name of the measurement or table repository. Default is mcsMQTT."

17.9.1.5 Organization Id (InfluxDB 2 only) / Username
"Name of the InfluxDB 2.x authorized organization for this repository or Username

for MySQL or SQL Server. Leave it blank for InfluxDB Version 1.x."

Page 406

17.9.1.6 Authorization Token
"Token used to authenticate access to InfluxDB. For Influx 2.x token is obtained

for InfluxDB UI. For Influx 1.x format is username:password if database has been

setup with username & password. For MySQL and SQl Server use account password if

username/passord are required."

17.9.1.7 Field Format
"Select the way the fields will be identified in the measurement or table. The

companion field will be obtained from the HS Device Value."

17.9.1.8 Date Format
" Select between local time and universal time for the LastDate field of data

being stored."

17.9.1.9 Extra Identifiation Fields
" Additional fields can be specified to store additional data in each record to
supplement the Device Value. Specify using string of comma-separated key=value
pairs where key is the field name and value is data to be stored. Replacement
variables and possibly expressions are used for the field values. e.g.
Category=$$TAG:,Derived=<<(ROUND($$DVR:(123):+$$VALUE:)/2,1)>>,Location=$$FLOOR:_$
$ROOM:_$$NAME:”

17.9.1.10 Database Hysteresis
"Minimum change in value between consecutive entries stored into long term
database. Use negative values to disable the hysteresis filter override."

17.9.2 History for Near Term Analysis (SQLite)
Filters are used to narrow down the slice of interest. The first is a date or range of dates. The second is

publish vs. subscribe topics. The third is based upon the topic and payload content.

Up to twenty rows of selected history is displayed at a time. Previous/Next buttons and a starting row

locator are available to select the start of the twenty.

Sort buttons at the top of each column in the History table are available to sort ascending of descending

on the particular column.

Page 407

Page 408

Page 409

Figure 233 History Tab Provisions for SQLite

The History tab and Chart tab are able to look at MQTT traffic in either tabular or visually in time history.

Since much MQTT traffic can exist and the database will tend to become large there are parameters that

can be used to restrict the growth of the database.

17.9.3 Near Term History

17.9.3.1 Database Location
"SQLite History database is located by default at HS subfolder \data\mcsMQTT.
Alternate locations can be specfied."

17.9.3.2 Pub-Sub Message History Retention
"History can be viewed via chart and message history can be viewed from History

tab, use 0 if history is not needed"

17.9.3.3 Date Format
" Select between local time and universal time for the LastDate field of data

being stored."

17.9.4 All History

17.9.4.1 Pub-Sub Message History
"Check to include all published messages in the history database"

"Check to include all associated messages in the history database"

"Check to include all non-Associated messages in the history database"

"Check to include all History checked messages in the history database"

17.9.4.2 HS Device History
"Select between saving all devices or saving only those explicitly identified on

Association tab S(hort Term) column"

17.9.4.3 HS Log
" HS Log of changes in topics marked with H checkbox on Association tab"

17.9.5 Filters History by Category, Topic and Payload

17.9.5.1 Date Range

"Pick one or two dates that will mark the start and end dates of displayed messages"

17.9.5.2 Outbound Messages
"Check to include messages published by HS"

17.9.5.3 Inbound Messages
"Check to include messages received via subscription"

17.9.5.4 Filter Message History by Mqtt Topic and JSON Payload Key
"Press to clear all Topic/JSON pull-down filters"

"Filter on Topic Segment # "

Page 410

"Filter on JSON Segment Key # "

17.9.5.5 HS Device Selector
"Select Device to be viewed"

17.9.6 History Table Build/Display Control

17.9.6.1 Show Selected SQLite Device History
"Press to show message history from SQLite based upon device and filters that have

been setup"

17.9.6.2 Show Selected InfluxDB, MySQL or SQL Server Device History
"Press to show message history from external database based upon device and topic

filters that have been setup"

17.9.6.3 Show Selected SQLite Topic History
"Press to show message history based upon topic filters that have been setup"

17.9.6.4 Prev/Next
"History table is shown 20 rows at a time. Enter the starting row"

"Click to display previous 20 rows in History Table"

"Click to display next 20 rows in History Table"

17.9.7 History Table Header
"Sort on Publish or Subscribe"

"Sort on Last Date"

"Sort on Topic"

"Sort on Payload"

Page 411

17.10 MQTT Page Chart Tab
The Chart tab is used to visualize the time history of one or two items that have been retained in the

History. If numeric data is available then it will be shown directly. If textual information is available, it

will be mapped into text-number pairs with the number shown in the chart and the text in the legend

table below the chart.

Date and Time selectors are used to identify the specific period of interest. This allows ranges down to

minutes. The range can be specified with specific dates or as a time span ending in current time.

The primary Y axis is on the left and the optional secondary Y axis can be used to draw a second item.

Pull-down selector will contain all the items that have been associated with HS Devices from the History

database. This can be expanded to all items via checkbox.

The Y axes on the chart can be auto scaled or specific minimum and maximum can be specified.

A full definition of the chart can be saved by name and later loaded.

Page 412

Figure 234 Chart Tab

17.10.1 Chart Definition Load / Save

17.10.1.1 Load Defined Chart
"Select previously saved chart setup to be used"

17.10.1.2 Chart File Format
"Select png vs. jpg file format for chart."

Page 413

17.10.1.3 SaveChart Definition
"Name of chart that can later be loaded with defined setup parameters"

"Press to save setup parameters for this chart"

"Press to delete the setup parameters for this chart"

17.10.2 Date/Time Range Selection

17.10.2.1 Absolute Date Range (Start,End) or (SingleDay)
"Pick one or two dates that will mark the start and end dates of displayed

messages"

17.10.2.2 Absolute Start and End Times
"Pick time of the chart start date"

"Pick time of the chart end date"

17.10.2.3 Relative Start Date-Time
"Number of dd hh:mm:ss in past to start chart. Blank to use absolute start and

end date-time."

17.10.3 Chart Selections

17.10.3.1 Load Defined Chart

"Select previously saved chart setup to be used. If All is selected then all

defined charts will be shown for ten seconds in round robin sequence."

17.10.3.2 Chart Definition Save / Delete
"Name of chart that can later be loaded with defined setup parameters"

"Save", "Press to save setup parameters for this chart"

"Delete", "Press to delete the setup parameters for this chart"

17.10.4 Topic/Item Selection

17.10.4.1 Include Non-Associated Messages
"Check to include Topics that have not been associated in Topic selectors for

charting"

17.10.4.2 Left Axis Topic/Item
"Select Topic to be charted"

"Select Device to be charted"

17.10.4.3 Right Axis Topic/Item
"Select Topic to be charted"

"Select Device to be charted"

17.10.5 Chart Y Axis Scaling

17.10.5.1 Left Axis Min & Max

"Minimum value to be used on Left Y axis. Blank is autoscale."

"Maximum value to be used on Left Y axis. Blank is autoscale."

17.10.5.2 Right Axis Min & Max
"Minimum value to be used on Right Y axis. Blank is autoscale."

Page 414

“Maximum value to be used on Right Y axis. Blank is autoscale."

"Check to force right Y axis to be scaled same as left scaled axis."

17.10.6 Chart Build/Display Control

17.10.6.1 Show Selected Chart

" Press to show Chart of topics or devices selected.”

17.11 BLE Setup Page (HS3)

17.11.1 Page Viewing Options

17.11.1.1 Auto Update of Beacon Location Graphic
"Beacon chart can be rebuilt on demand with pushbutton or automatically when a beacon
Zone has changed. A Zone is a single value formed with X and Y locations.

17.11.1.2 Beacon Locations Table Verbosity
"The beacon table will normally be only status, but when programming the beacon

parameters more information is needed. When tuning the Kalman filters the RSSI data can

also be viewed."

17.11.1.3 Beacon Locations Table Display Hide Override
"All beacons reported by the scanners are shown in the Beacon Locations table excepted

those checkboxed in the H column. They can be restored for display by using this

checkbox."

17.11.1.4 View Beacon Info from Scanner Selected
"All scanners are expected to report the same beacon information. The scanner selected

as Master is the default one for which the Beacon Location data is shown. To view other

then select the desired scanner."

17.11.2 Beacon Locations with Last 24 Hours Data

17.11.2.1 H(ide)
"Check to hide beacon row from page unless overridden by show all beacons checkbox."

17.11.2.2 R(emove)
"Click to mark for Remove. Publish to ALL BLE scanners will occur when column header

button is pushed."

"Click to publish message to scanners to remove all rows marked"

17.11.2.3 B(lacklist)
"Click to mark for Blacklist. Publish to ALL BLE scanners will occur when column header

button is pushed."

"Click to publish message to scanners to blacklist all rows marked"

17.11.2.4 U(nblacklist)
"Click to mark for Unblacklist. Publish to ALL BLE scanners will occur when column

header button is pushed."

"Click to publish message to scanners to unblacklist all rows marked"

Page 415

17.11.2.5 Address

17.11.2.6 Vendor

17.11.2.7 Name
"The name is used as part of the topic and is used as the label on the beacon chart. As
names are entered they are published to all BLE scanners.

17.11.2.8 TxPower@1m
"The power is the RSSI measured at 1 meter from the scanner. It is used to improve the

distance measures that affords better X, Y location determination."

17.11.2.9 TxPower@10m
"The power is the RSSI measured at 10 meters from the scanner. It is used to improve the

distance measures that affords better X, Y location determination."

17.11.2.10 RSSI

17.11.2.11 Filt RSSI

17.11.2.12 Zone

17.11.2.13 FOM

17.11.2.14 <Scanner Number>

17.11.2.15 X

17.11.2.16 Y

17.11.3 Scanner Locations

17.11.3.1 Scanner ID

17.11.3.2 LWT

17.11.3.3 XY Location

"Scanner locations can be changed, but only after the scanner ID is first setup manually

(via Tasmota Console) on an individual ESP32 scanner. Use format X,Y for the two numeric

coordinates in range 0 to 100"

17.11.3.4 Receiver Gain %
"The scanner gain is a percentage of nominal gain to account for the receiver antenna
gain and for block effects due to scanner location. Gains lower than 100 will result in
the distance to beacon calculation to be increased by the specified percentage. Above
100 have the opposite effect."

17.11.3.5 Selected for Master Scanner

17.11.4 Configuration Parameters

17.11.4.1 BLE Scanner Group Topic (e.g. BLEScanners)
"A group topic is used to publish the same message to all BLE scanners. This assures

that all will have the same parameters when calculating beacon position."

17.11.4.2 BLE Scanner Root Topic (e.g. BLEScan)
"The BLE scanners use a topic format of 'root/#/name' to publish beacon information.

This text box entry is the 'root' part of this topic. It will be shared among all BLE

scanners."

17.11.4.3 BLE Scanner Scan Interval (seconds)
"A scan will be started periodically at the number of seconds entered for the scan
interval. There is a corresponding entry for scan duration which is the actual time when
listening for beacons. The difference in the two is when the antenna will be dedicated
to Wifi. During scanning the antenna will be multiplexed between the bluetooth and Wifi.
Default is 60 seconds."

Page 416

17.11.4.4 BLE Scanner Scan Duration (seconds)
"During the scan duration (seconds) the ESP32 will be listening for announcements made by

the beacons. Note related setting for Scan Interval. Default is 30 second duration."

17.11.4.5 BLE Scanner Reporting Frequency
"The scanners can publish beacon position after every scan or publish only with a change

in X,Y or Zone"

17.11.4.6 Beacon RSSI Measurement Error
"When the beacon RSSI is considered to have no error then a value of 0 is entered and no
filtering will be done. Otherwise, a Kalman filter will be used to account for RSSI
variation in measurement. A larger number reflects greater variably in the quality of
the measurement. A value under 10 is reasonable. Max is limited to 50 by scanner."

17.11.4.7 Beacon XY Measurement Error
"The XY calculation is based upon the RSSI (filtered or unfiltered) from all scanners.
As beacons drop out from the scanner's range the calculation will be affected by the
smaller sample size. Filtering this effect will reduce variability in the X,Y location
reporting. It also used as the Zone window hysteresis. The Zone is the single value
reporting of the X & Y parameters. A value under 5 is reasonable. If value of 0 is used
then no filtering will be done on XY which also results in a noisy Zone report."

17.11.4.8 Beacon Zone Hysteresis
"The Zone is a single number that represents the X and Y coordinates using formula

X*100+Y. The Zone value only changes when the specified hysteresis has been reached

since the last Zone change."

17.11.4.9 Beacon Dropout Count
"A scan is performed every minute or other interval specified. Beacons may or may not
respond to a scan. After a number of consecutive scans without a response the beacon
should be considered out of range of the scanner and this scanner's information no longer
considered in the XY location determination. Values above 2 are reasonable."

17.11.4.10 Beacon New Discovery Disable
"Beacons tend to appear over time and clutter the system with bluetooth devices that have

no interest. After the known beacons have been discovered then new discovery should be

disable in a typical setup."

17.11.4.11 Multiple Beacon Removal
"Click to remove all beacons from all scanners. This includes the names of the beacons."

"Click to remove all beacons that have not been given names from all scanners."

17.11.4.12 Master Scanner Selection
"When 0 is selected then the ESP32 will find the lowest numbered scanner that is online
to be the master. If a specific master is selected then it will always be master even
when not online. Selecting a specific one may be useful for analysis of system behavior,
but for normal use the selection should be 0 to provide the most robust reporting."

Page 417

17.11.4.13 MQTT Retain Usage
"The retain flag is part of the MQTT protocol. A publish message that has been flagged
as retain will be saved by the MQTT broker and it will be resent to any subscribed client
that has just come online. Retained messages tend to be hard to remove and result in
behavior that may be hard to understand. They are useful to assure that mcsMQTT is
initialized immediately when it starts. Otherwise, it needs to wait for up to the log
reporting interval which is typically five minutes before confidence will exist in the
Beacon Selection table."

17.12 Local Page

Figure 235 Local Page Tabs

17.12.1 IP 8 Channel Relay/Input

17.12.1.1 IP Address

"Used for TCP access. Needs to be on same subnet as HS."

17.12.1.2 Port
"Used for TCP access. Default is 1234."

17.12.1.3 IP Address
"Used to poll the inputs of relay/input module. Leave blank if inputs are not going to

be used."

17.12.2 Local HVAC (Intesis/Daikin/Venstar/Midea/AirTouch)

17.12.2.1 Intesis/Daikin IP Address
"Used for IP access to Daikin or Intesis unit. Needs to be on same subnet as HS.”

17.12.2.2 Daikin 13 Digit Key
"13-digit key from sticker on the back of the Daikin Wifi unit."

17.12.2.3 Intesis vs. Daikin Protocol
“Protocol for some units is REST and for others such as Intesis it is WMP.”

17.12.2.4 Venstar Discover
"Use SSDP to try to find Venstar Thermostat on the network."

17.12.2.5 Venstar Polling Rate
"Polling rate in milliseconds for status updates. Use 0 to disable contact with

thermostat."

Page 418

17.12.2.6 Venstar IP
"IP address of the Venstar thermostat."

“Select model of thermostat that is being setup."

17.12.2.7 Discover Midea Thermostats
“Use UDP to try to find Midea Thermostat on the network.”

17.12.2.8 Polling Rate (milliseconds)
“Polling rate in milliseconds for status updates. Use 0 to disable contact with

thermostat.”

17.12.2.9 Account Email
"Account Email associated with the appliance(s)."

17.12.2.10 Account Password
"Account password associated with the appliance(s)."

17.12.2.11 Folder Path of midea-beautiful-air-cli.exe
"Full path of folder in which Python executable midea-beautiful-air-cli.exe is located.

e.g. C:\Users\me\AppData\Local\Programs\Python\Python310\Scripts\"

17.12.2.12 Thermostat IP
"Specific IP of thermostat for the case where it is not visible with UDP discovery on the

HS LAN. Not needed otherwise."

17.12.2.13 AirTouch Polling Rate
"Polling rate in milliseconds for status updates. Use 0 to disable contact with

thermostat."

17.12.2.14 AirTouch IP
"IP address of the AirTouch thermostat hub."

17.12.3 WLED

17.12.3.1 Max Segment Index
"If WLED controller is setup with multiple segments then enter then maximum index for

this controller."

17.12.3.2 IP Address
"Segments use HTTP JSON so the IP address is needed."

17.12.3.3 Select Playlist
"Select file that contains the WLED playlist"

17.12.3.4 New Playlist
"Playlist file contains a WLED playlist that can be published on command"

17.12.3.5 Playlist JSON Content
"Example...{""ps"":[26,20,18,20],""dur"":[30,20,10,50],""transition"":0,""repeat"":10,""e

nd"":21}. This example applies preset ID 26 For 3 seconds, then preset 20 for 2 seconds,

Page 419

then preset 18 for 1 second, lastly preset 20 again for 5 seconds. This repeats 10 times,

then preset 21 Is applied."

17.12.3.6 Execute Playlist
"Select WLED Topic that will show the playlist"

17.12.4 Serial

17.12.4.1 Serial Port
"Exclude the prefix. The plugin will prefix with COM for Windows and /dev/ttyUSB for

Linux. Alternately enter the full IP and port such as 192.168.0.2:1234 for a raw network

connection."

17.12.4.2 Serial Baud
"e.g. 9600. Other properties will be N,8,1. If IP is used for the port then the baud

entry is ignored. It must be set manually in the IP/Serial device."

17.12.4.3 Serial End Of Line
"Byte that Is used To terminate a line Or messages. Default Is 10 (Line Feed). Blank
indicates to use 3 second without additional bytes."

17.12.4.4 Serial Transmit Rate
"Minimum number of milliseconds between messages sent on the serial port. Used to limit
low bandwidth links."

17.12.4.5 Serial Protocol Layer
"Select protocol layer on serial transport."

17.12.4.6 Serial Decoder
"Select decoder to convert the serial stream to JSON"

17.12.5 Bluetooth for Sensor and Actuators

17.12.5.1 OpenMQTTGateway Base Topic

"Enter base MQTT Topic of each ESP32 OpenMQTTGateway unit. Use semicolon to seperate.

e.g. home/OMG_ESP32_BLE;BLE/OMG_heltec_ble or more generic as BLE."

17.12.5.2 OpenMQTTGateway Traffic Control

"Discovery will enable reception of all BLE devices. Update will set whitelist of
devices that have been associated with HS on MQTT Page, Association Tab. Disable will

ignore all data from the Gateway(s). Note the MQTT Page, Association Tab, Reject column

can be used to selectively restrict Gateway from sending updates for that device."

Page 420

17.12.6 Bluetooth Beacon for Home-Away

Figure 236 BLE Beacon Presence Detection for HS4

The Windows implementation of the BLE Beacon presence detection uses the Bluetooth capabilities

built into Windows. It may be a Bluetooth device integrated into the motherboard or may be a USB

dongle. The Linux implementation uses the Bluetooth build into RPi and should also work with a USB

dongle, but this second configuration has not been tested. Install instructions of the Linux BLEMQTT

application that communicates with the plugin via MQTT is provided in Section 20.16.6.

When using Bluetooth on the local computer then mode radio is selected among the top three options.

The first turns off the process that is gathering beacon advertisements. The second enables the process,

but will ignore any beacon advertisements that have not been associated with HS Devices. The third

collects all beacon advertisements and makes them visible on the MQTT Page, Association tab from

where association to HS Device can be made. It is recommended that this discovery mode only run for a

short period until a known beacon has been identified. Smartphones and similar randomize their

Bluetooth MAC so a large number of beacons appear to exist while they are all phantoms.

When doing beacon data collection using BLEMQTT on a remote computer then the top and lower two

mode radios are used. The functionality is the same as with local, but management of running BLEMQTT

is not handled by the plugin and is a user responsibility.

Starting BLE Beacon detection on Windows or Linux is automatic when running the plugin on the same

computer as HS4. No remote Windows capability is provided.

For remote RPi installations where one or more RPi are not on the HS4 computer then BLEMQTT is

started with two methods to provide configuration parameters. One is on the command line. The other

is in the file CommandLine.ini. Use of CommandLine.ini provides additional security when username

and password are needed.

Systemctl will normally be used to manage the execution of BLEMQTT on the remote computer. No

matter what mechanism is used, the expected command line syntax is shown below. Required is the

command BLEMQTT and the broker-ip as its parameter. The other parts of the syntax are dependent

upon the user’s configuration. Sudo if not logged in as an administrator. Username and password if the

Page 421

MQTT broker has login credentials. If using the mcsMQTT Internal MQTT Broker then the broker-ip is

the actual IP (e.g. 192.168.0.100) of the HS computer. It is not localhost or 127.0.0.1.

sudo ./BLEMQTT broker-ip username password

The plugin will attempt to start BLEMQTT on the local computer when Local Page Bluetooth tab enables

BLE scanning so either make a dummy executable of the same name or remove it from the HS computer

if you do not want to run BLEMQTT on the HS4 computer.

When the plugin exits or when the Local Page Bluetooth tab radio is set to disable scanning then the

plugin will send MQTT message (Beacon/MQTTEXIT 1) that will shut down BLEMQTT on all computers

that use the same MQTT broker. If you use systemctl to launch it then it will be able to recognize it is

shut down and start it again.

mcsMQTT will process all received Beacon/xx.xx.xx.xx.xx.xx topics and treat them as beacons.

Two options exist for data that is stored in the HS4 Beacon Feature. One is the RSSI of the beacon to get

an idea of distance. The other is a simple on/off binary for ease of presence change trigger. Presence or

RSSI will continue to be reported until the specified timeout has occurred since the last advertisement

by the beacon. Shorter timeouts have greater potential for false detection. Longer timeouts will

increase the latency in reporting that a beacon is no longer present. A beacon detection will be

reported immediately.

17.12.6.1 Beacon Enable
"BLE Beacon operations to enable, to only update status of previously discovered beacons,
or to collect New beacon advertisements. Can be selected for Windows Local and Remote or
Remote only."

17.12.6.2 HS Device Value Contents
"HS Device Value is set to -1 when Beacon is out of range. When Beacon is in range then

the HS Device Value will hold either 0 or the negative of filtered RSSI."

17.12.6.3 Beacon Timeout
"Enter number of seconds of no advertisement before declaring beacon no longer in range."

17.12.7 Bluetooth using Espresense for Room Localizaation

17.12.7.1 Delete
"Check to delete room from table. If Espresense continues to report the room it cannot

be deleted."

17.12.7.2 Room Radius
"Enter the distance from the ESP32 station for which Espresense Devices will be
considered to be in the station's room."

17.12.7.3 Room Dwell Exit Seconds
"Time is seconds to consider a Espresense Device to have left a room before changing
status to 'Home'. If Espresense Device enters another room this exit dwell time is
ignored."

Page 422

17.12.7.4 Associate Bluetooth Device
"Check to collect room assignment changes in network long term database for later viewing
or charting"

17.12.7.5 Tx Power Gain
"Multiplier to be applied to distance measurement from Espresense Device to account for
variation in Tx power of the Device. Value > 1.0 will increase the distance that is
being reported by Espresense, which implies a higher Tx Power for the Device than a
nominal Bluetooth beacon."

17.12.7.6 Short Term Recording

"Check to collect room assignment changes in SQLite database for later viewing or
charting"

17.12.7.7 Long Term Recording
"Check to collect room assignment changes in network external database for later viewing
or charting"

17.12.7.8 Show Distance Data in Association Table
"Check to put raw distance data on MQTT Page, Association Tab"

17.12.7.9 Remove Unassociated Devices
"Check to remove espresense devices that have not been associated with HS and inhibit
adding devices to table."

17.12.7.10 Room – Device Matrix Refresh
"Use button to refresh espresence bluetooth distance and time data"

17.12.7.11 Association Table Data
"Check to put raw distance data on MQTT Page, Association Tab"

17.12.8 Broadlink IR/RF

17.12.8.1 Network SSID

Enter SSID of AP to which Broadlink will join.

17.12.8.2 Network SSID Password
"Enter password credentials of local network AP."

17.12.8.3 Network Security Mode
"Select the security mode used by network AP."

17.12.8.4 Join Network
“Long press the reset button until the blue LED is blinking quickly. Long press again
until blue LED is blinking slowly. Manually connect to the WiFi SSID named BroadlinkProv.
Assure correct SSID, password and security mode parameters have been entered."

17.12.8.5 Broadlink IP
"IP of Broadlink device"

"IP Address of the Broadlink device. Needed when scan does not detect it. There must be

an IP before other Broadlink operations can be done."

17.12.8.6 Scan for Broadlink Device
"Scan for Broadlink Device", "Click to discover Broadlink device on network. This will

allow authorization data to be collected so further communications are possible."

17.12.8.7 HS Device/Feature Model
"Select how IR/RF codes will be represented in HS Device. VSP is more concise. Feature
per code for voice control."

Page 423

17.12.8.8 Unit for Learning and Assignment
"Select the broadlink device that will be used for learning and assignment support."

17.12.8.9 Code Name to be Learned
"Name that will be assigned to next learned IR or RF code. Set this box before using a

Learn button."

17.12.8.10 Learn IR
"Learn IR Code", "Enter the name of the code to be learned in textbox above. Press this

learn button, Broadlink device LED will turn red to indicate learning. Point remote at

red led and press button on remote to learn the code. Red led will turn off."

17.12.8.11 Learn RF
"Learn RF Code", "Enter the name of the code to be learned in textbox above. Press this

learn button, Broadlink device LED will turn red to indicate learning. Point remote at

red led and do long press on remote followed by multiple short presses on remote to learn

the code. Red led will turn off."

17.12.8.12 Cancel Learning
"Cancel Learning", "Learning is cancelled automatically when code has been detected and

red led goes out. To abort this process, use the Cancel button."

17.12.8.13 Play Code
"To confirm proper control of learned code it can be played at this time. It can also be
played later via HS Device."

17.12.8.14 Import Codes
"Copy pronto hex code from a database such as http://irdb.tk/find/ and paste into text
box after the name of the code has been entered above. Alternately, enter a full
filename and import a set of pronto codes for the current Appliance. In this case the
file format is assumed to be a line with the code name followed by the Pronto hex code on
the subsequent line. Blank lines are ignored.”

17.12.8.15 Auto Assignment
"Assignment of an Appliance to a HS Device can be done at time of learning or can be done
manually later."

17.12.8.16 Manual IR Assignment to HS
"Assigning an IR Appliance will create a HS Feature or add a VSP entry depending upon the
HS Feature model selected. All learned codes for that Appliance will be available for HS
control."

17.12.8.17 Manual RF Assignment to HS
"Assigning an RF Appliance will create a HS Feature or add a VSP entry depending upon the
HS Feature model selected. All learned codes for that Appliance will be available for HS
control."

17.12.8.18 Remove IR/RF Appliance from HS
"Remove Assigned Appliance Codes from HS Device / Feature."

17.12.8.19 View IR/RF Library
"Contains listing of IR and RF learned and imported library"

Page 424

17.12.8.20 Edit the Code's Repeat Count

"Numeric change in number to times to repeat the learned/imported code. A value of 0 is

zero repeats. 1 is for one repeat which means the code is sent twice."

17.12.8.21 Edit the Code's Pulse Timing
"Numeric change in pulse count to be applied to the learned/imported code. Pulse is the

change in the number of pulses that represents each On/Off burst. This can be used to

tweak the timing of the IR signal for sensitive equipment. A value of -1 will reduce the

number of pulses at each transition by one. A value of 3 will increase the number of

pulses by 3."

17.12.8.22 Delete from Library
“The selected item from the library can be permanently deleted. This will remove the
item from Broadlink.ini library.”

17.12.9 GW1000

17.12.9.1 IP of HS NIC
“Enter network interface IP. If only one NIC is present then 127.0.0.1 can be used.
This is the one that has a route to GW1000. On the App WS View a specific IP is needed
(not 127.0.0.1) on the Customized page of the WS View App after clicking on the device in
the App from Device List menu and selecting 'more' option until Customized is viewed."

17.12.9.2 Port of HS NIC
"Enter network Interface Port. Default port Is 8080, but can be anything that matches
the port setup on the App WS View."

17.12.9.3 Disconnect from GW1000
"When setup, mcsMQTT will be listening for any updates from GW1000 unless disabled."

17.12.9.4 GW1000 Connection Timeout
"Enter number of minutes without data received from GW1000 before resetting listener
port. Leave blank to not monitor timeout."

17.12.10 Epson

17.12.10.1 Epson IP

"Used for TCP access to Epson ESC/VP21.net projector. Default port is 3629. Use :xxxx

suffix if other port being used."

17.12.10.2 Epson Poll
"Interval to request status updates from Epson ESC/VP21.net projector."

17.12.10.3 Epson Disconnect
"Disconnect from Epson projector."

17.12.11 Resources

17.12.11.1 Resource Selection
"Check to include collection of data for this resource."

"Name of additional (Non-HS/Non-Plugin) processes to monitor."

Page 425

17.12.12 Hunter Douglas PowerView Gen3

17.12.12.1 Hub IP Address
"IP address of PowerView hub. e.g. 192.168.100.200"

17.12.12.2 Status Update Interval (ms)
"Status update query interval (milliseconds)."

17.12.12.3 URL Path
"Select between Gen3 and Gen2 for the equipment being used.”

17.12.13 Command Terminal

17.12.13.1 apsaccess Path

"Full path to apsaccess executable. e.g. C:\Program Files\APS\apsaccess.exe"

17.12.13.2 Execution Interval (ms)
"Execution interval (milliseconds)."

17.12.14 Speaker

17.12.14.1 KEF Speaker IP
"Used for network access to KEF speaker. Default port is 80. Use :xxxx suffix if other

port being used."

17.12.14.2 Status Poll Rate (Seconds)
"Interval to request status updates from KEF speakers."

17.12.14.3 Disconnect from Speaker
"Disconnect from KEF speakers."

17.12.15 Spa

17.12.15.1 Network Address
"Enter IP and port in format xxx.xxxx.xxx.xxx:yyyy of Jacuzzi. Port 4257 will be assumed
if not specified."

17.12.15.2 Disconnect
"When enabled mcsMQTT will be monitoring data stream from hot tub and allowing HS
commands to be delivered. When disabled the connection will no longer be active."

17.12.16.1 IP (if on different subnet)
"Optionally enter IP of spa if not on same subnet. If on same subnet then the unit will
be automatically discovered"

17.12.16.2 Python Path
"Enter path where python.exe is located including the name of executable python such as
C:\Python37-32\python.exe"

Jacuzzi (ProLink/Balboa)

17.12.16 Gecko InTouch Parameters

Page 426

17.12.16.3 Spa Polling Rate (milliseconds)
"Enter rate in milliseconds at which the unit will be polled for data. Min And max are
10000 and 3600000 which is every 10 secons and each hour."

17.12.16.4 Spa Disconnect
"When setup, mcsMQTT will be requesting updates from unit at the specified polling rate
unless disabled."

17.12.17 Roborock Parameters and Control

17.12.17.1 IP
"IP for network access."

17.12.17.2 Access Token
"Access token for each vacuum."

17.12.17.3 Path to Python executable mirobo.exe

"Enter path where mimobo.exe Is located."

17.12.17.4 Status Polling Rate (milliseconds)
"Enter rate in milliseconds at which the unit will be polled for status. Consumables,
History and Timers will be polled at multiples of this interval."

17.12.17.5 Vacuum Disconnect
"Connect To All Roborock Vacuums", "Disconnect From All Roborock Vacuums"

17.12.17.6 Scheduling Timer
"Timers are used for scheduled use of the vacuum. It appears, however, that the miio
library fails in its support and author is not interested in fixing parsing of the cron
parameters."

17.12.17.7 Minute(s) of Day
"Enter minute of day to start. Use comma for multiple minutes. Leave blank if don't
care."

17.12.17.8 Hour(s) of Day

"Enter hour of day to start. Use comma for multiple hours. Leave blank if don't care."

17.12.17.9 Day(s) of Month
"Enter day(s) of month to start. Use comma for multiple days. Leave blank if don't
care."

17.12.17.10 Day Of Week
"Check to include weekday in start time criteria"

17.12.17.11 IP for Timer
"Select The IP to which to apply timer settings"

17.12.17.12 Apply to Timer Number

"Select timer number in which to apply above schedule."

17.12.17.13 Delete Timer Number
"Select timer number to remove from schedule."

Page 427

17.12.18 TP-Link Kasa Tapo

17.12.18.1 Network IP
“Enter IP on network ending with .255 if multiple NIC are installed.”

17.12.18.2 Kasa Account Email
“Enter Kasa Account Username / Email.”

17.12.18.3 Kasa Account Password
“Enter Kasa Account Password."

17.12.18.4 Path to Python executable kasa.exe
“Enter path where kasa.exe Is located.”

17.12.18.5 Status Polling Rate (milliseconds)

"Enter rate in milliseconds at which the unit will be polled for status.”

17.12.18.6 Discovery
“Request discovery of Kasa devices.”

17.12.18.7 TP-Link Disconnect
“Enable or disable communication with TP-Link Devices.”

Page 428

17.13 Cloud Page

17.13.1 URL

17.13.1.1 URL

"Used as the address that will be polled. HTTP protocols normally start with 'http://'
or 'https://'. UDP protocols and TCP normally start without protocol prefix. Webhook
protocol normally start with 'ws://’"

17.13.1.2 Polling Interval
"Enter Input polling interval in milliseconds if periodic requests to this URL is
desired. If this URL is setup to be used only from Device change requests from HS then
set to 0."

17.13.1.3 Polling Endpoint
"Endpoint to add as suffix to URL IP when polling for updates. Alternately if text ends
in .pub then it is a publication list file in \data\mcsMQTT subfolder that can contain
one or more endpoints."

17.13.1.4 Protocol
"Select protocol to use when communicating to the server. GET is command/response and
uses URL querystring to send data. POST is command/response and uses body to send data.
UDP uses datagram and can be listen-only. WS listens as a WebSocket request. TCP In
listens on local NIC port (127.0.0.1 can be used if only 1 NIC)."

17.13.1.5 Authorization

"Select authorization approach. This will be included in the Headers as required with

the Authentication key.”

(oAuth2 Only) "Manually generate a new oAuth2 token. This is not normally needed as

tokens are monitored for expiration and new tokens generated before they expire.

17.13.1.6 Additional Parameters
"Default headers are Content-Type:application/x-www-form-urlencoded, Accept:*/*, User-
Agent:mcsMQTT, KeepAlive:True, Timeout:5000, Accept-Encoding:identity;q=1.0,*;q=0. Enter
additional headers or redefine any default with syntax key:value"

"Secret Key for UDP; Username and password separated by colon for Basic Authentication
(.e.g. myuser:mypass); Token when Token or Bearer authentication is selected."

"URL to be used when authentication is needed per oAuth2 authentication method. A token
will be returned with a call to this URL from which subsequent access to the primary URL
can be made using this token for authentication."

"JSON text with the parameters necessary to perform authentication. Included will be the
client token, client secret, grant type, and typically username and password. An example
is
{""grant_type"":""password"",""client_id"":""12345"",""client_secret"":""ABCDE"",""userna
me"":""xxx@gmail.com"",""password"":""xxxxx""}"

17.13.1 YoLink

17.13.1.1 mcsMQTT Clients
"Select single unless multiple instances of mcsMQTT will be accessing the same YoLink

device"

Page 429

17.13.1.2 YoLink Server Connection
"Enable or disable communication with the YoLink Server."

17.13.1.3 Account Access Button
"Using this button will present an authorization screen to allow mcsSolutions (mcsMQTT)

to collect the list of YoLink devices that have been setup in your account. This can be

done in lieu of listing the QR codes that the plugin is being asked to manage."

17.13.1.4 YoLink 32 Character QR Code
"32-character code obtained by scanning QR Code on YoLink device"

17.13.2 Voice Monkey

17.13.2.1 Voice Monkey Token

"Enter token from voicemonkey.io dashboard"

17.13.2.2 Voice Monkey Secret
"Enter secret from voicemonkey.io dashboard"

17.13.3 Geofence

17.13.3.1 Geofence location name
"Enter name to assign to this waypoint location. Distance and Here-Away subtopics will

be created under this name."

17.13.3.2 Latitude
"Enter latitude of this location."

17.13.3.3 Longitude
"Enter longitude of this location."

17.13.3.4 Distance Boundary
"Enter distance from location that establishes geofence boundary. 20% hysteresis margin

is used when determining here vs. away."

17.13.4 Sense Energy

17.13.4.1 Account Email

"Enter email used to setup account with Sense Energy."

17.13.4.2 Account Password
"Enter password used to setup account with Sense Energy"

17.13.4.3 Server Polling Rate (milliseconds)
"Enter number of digits of precision to show for wattage.”

17.13.4.4 Display Precision
"Enter rate in milliseconds at which the Sense server will be polled for data. Min And
max are 10000 and 3600000 which is each minute and each hour

17.13.4.5 Server Disconnect

"When setup, mcsMQTT will be requesting uprates from Sense server at the specified

polling rate unless disabled."

Page 430

17.13.4.6 Additional Download
"Enable download of this data from Sense server"

17.13.5 Hubspace

17.13.5.1 Account Email
"Enter email used to setup account with Hubspace.

17.13.5.2 Account Password
"Enter password used to setup account with Hubspace."

17.13.5.3 Python Path
"Enter path where python.exe is located including the name of executable python such as

C:\Python37-32\python.exe"

17.13.5.4 Python Script Path
"Enter path where HubspaceRequest.py was placed such as C:\Python37-

32\Scripts\HubspaceRequest.py"

17.13.5.5 Status Poling Milliseconds
"Enter rate in milliseconds at which the Hubspace server will be polled for data. Each

minute is 60000. Each hour is 3600000. etc."

17.13.5.6 Server Disconnect
"When setup, mcsMQTT will be requesting uprates from Hubspace server at the specified

polling rate unless disabled."

17.13.6 Switchbot

17.13.6.1 Token
"Enter token from Switchbot App. Go to Profile > Preference b) Tap App Version 10 times.

Developer Options will show up c) Tap Developer Options d) Tap Get Token"

17.13.6.2 Secret Key
"Enter secret from Switchbot App. Secret is obtained the same way as token."

17.13.6.3 Server Poilling Rate (milliseconds)
"Enter rate in milliseconds at which the Switchbot server will be polled for data.

Minimum interval is 100000 due to Switchbot server limit of 1000 requests per day."

17.13.6.4 WAN-Visible Webhook URL
"Enter address to which Switchbot server will push event updates to HS. This URL needs

to be routable from the WAN to LAN on which HS resides."

17.13.6.5 Server Disconnect
"When setup, mcsMQTT will be requesting uprates from Switchbot server at the specified

polling rate unless disabled."

17.13.7 Tank Utility Connect Parameters

17.13.7.1 Account Email
"Enter email used to setup account with Tank Utility."

17.13.7.2 Account Password
"Enter password used to setup account with Tank Utility."

Page 431

17.13.7.3 Server Disconnect
"When setup, mcsMQTT will be requesting updates from Tank Utility server at the specified

polling rate unless disabled."

17.13.8 Abode

17.13.8.1 Account Email
"Enter email used to setup account with Abode."

17.13.8.2 Account Password
"Enter password used to setup account with Abode."

17.13.8.3 Video Storage Path
"Enter path to folder where Cam captures will be saved."

17.13.8.4 Refresh Devices
"Press to find any newly added panel devices and refresh state of existing devices."

17.13.8.5 Server Disconnect
"When fully setup, mcsMQTT will be accepting updates and providing control with Abode

server. When disabled no contact with the Abode server will exist."

17.13.9 Orbit B-Hyve

17.13.9.1 Account Email

"Enter email used to setup account with Orbit."

17.13.9.2 Account Password
"Enter password used to setup account with Orbit."

17.13.9.3 Refresh from Server
"Request from Orbit Server the Devices, Timelines and Landscape information. Most

current status is included in these responses."

17.13.9.4 Server Disconnect
"When fully setup, mcsMQTT will be accepting updates and providing control with Abode

server. When disabled no contact with the server will exist."

17.13.10 Hunter Hydrawise

17.13.10.1 Account Email
"Enter email used to setup account with Hydrawise."

17.13.10.2 Account Password
"Enter password used to setup account with Hydrawise."

17.13.10.3 Additional Properties
"Additional information is available from Hydrawise server that is not included in HS

Devices that are automatically created. This selection will put these in the Association

Table for user association to HS as desired."

Page 432

17.13.10.4 Virtual Flow Sensor
"If enabled a HS Device Feature will be created and mimic the change in the sensor
reported by Hydrawise. In addition, it can be reset to 0 on manual Device Control or HS
Event; or automatic action within the plugin with a cycle starts."

17.13.10.5 Polling Interval
"Interval to request status when irrigation is not running."

"Interval to request status when irrigation is running."

17.13.10.6 Server Disconnect
"When fully setup, mcsMQTT will be accepting updates and providing control with Hydrawise

server. When disabled no contact with the Hydrawise server will exist."

17.13.10.7 Historical Flow Chart
"Show chart for past one week zone flow"

"Show chart for past two weeks zone flow"

"Show chart for past four weeks zone flow"

"Show chart for past eight weeks zone flow"

17.13.11 Solar

17.13.11.1 Solcast Resource Id

"Enter resource Id from Solcast account”

17.13.11.2 Account Password
"Enter IP of Solar_Assistant MQTT Server”

17.13.11.3 Server Disconnect
"Enable or disable communication with the Solar Energy Servers.”

17.13.12 Rheem EcoNet

17.13.12.1 Account Email
"Enter email used to setup account with Rheem EcoNet."

17.13.12.2 Account Password
"Enter password used to setup account with Rheem EcoNet."

17.13.12.3 Server Disconnect
"When setup, mcsMQTT will be connected to the EcoNet server ready to accept status

updates unless disabled."

17.13.12.4 Status Poling Milliseconds
"Time interval in milliseconds to request status. Status is pushed when a change occurs

due to equipment or HomeSeer control. Status is not pushed from control performed by

Rheem EcoNet App."

Page 433

17.13.12.5 Additional Download
"Get login and equipment information from EcoNet server. HS Device and Features will be
created if not already created for most of the equipment properties. Others will only be
visible in the Association table."

17.13.13 Thermostats NuHeat

17.13.13.1 Account Email
"Enter email used to setup account with NuHeat."

17.13.13.2 Account Password
"Enter password used to setup account with NuHeat."

17.13.13.3 House(s) Id
"Enter numeric Id of House for thermostats. Use semicolon to separate multiple

thermostats. Id can be obtained from NuHeat account browser page or App."

17.13.13.4 Server Pollling Rate
"Enter rate in milliseconds at which the NuHeat server will be polled for data. Min And

max is 10000 and 3600000 which is each minute and each hour."

17.13.13.5 Server Disconnect
"When setup, mcsMQTT will be requesting updates from NuHeat server at the specified

polling rate unless disabled."

17.13.14 Thermostats Nexia/Trane/American Standard

17.13.14.1 Account Email

"Enter email used to setup account with Nexia."

17.13.14.2 Account Password
"Enter password used to setup account with Nexia."

17.13.14.3 House(s) Id
"Enter numeric Id of House for thermostats. Use semicolon to separate multiple

thermostats. Id can be obtained from Nexia account browser page or App."

17.13.14.4 Brand
"Access to the cloud server depends upon the brand of thermostat. Select the appropriate

brand."

17.13.14.5 Server Pollling Rate
"Enter rate in milliseconds at which the Nexia server will be polled for data. Min And

max is 10000 and 3600000 which is each minute and each hour."

17.13.14.6 Server Disconnect
"When setup, mcsMQTT will be requesting updates from server at the specified polling rate

unless disabled."

17.13.15 Thermostats Carrier/Bryant/Ion

17.13.15.1 Account Email

"Enter email used to setup account with Carrier/Bryant/Ion."

Page 434

17.13.15.2 Account Password
"Enter password used to setup account with Carrier/Bryant/Ion."

17.13.15.3 Python Path
"Enter path where python.exe is located including the name of executable python such as

C:\Python37-32\python.exe"

17.13.15.4 Python Script Path
"Enter path where CarrierRequest.py was placed such as C:\Python37-

32\Scripts\CarrierRequest.py

17.13.15.5 Server Pollling Rate
"Enter rate in milliseconds at which the Carrier/Bryant/Ion server will be polled for

data. Min And max are 10000 and 3600000 which is each minute and each hour."

17.13.15.6 Server Disconnect
"When setup, mcsMQTT will be requesting updates from server at the specified polling rate

unless disabled."

17.13.16 Pool

17.13.16.1 Account Email

"Enter email used to setup account with Hayward Omnilogic."

17.13.16.2 Account Password
"Enter password used to setup account with Hayward Omnilogic"

17.13.16.3 Python Path
"Enter path where python.exe is located including the name of executable python such as

C:\Python37-32\python.exe"

17.13.16.4 Python Script Path
"Enter path where OmnilogicRequest.py was placed such as C:\Python37-

32\Scripts\OmnilogicRequest.py"

17.13.16.5 Server Polling Rate (milliseconds)
"Enter rate in milliseconds at which the Omnilogic/Bryant/Ion server will be polled for

data. Min And max is 10000 and 3600000 which is each minute and each hour."

17.13.16.6 "Server Disconnect"
"Connect to Omnilogic Server", "Disconnect from Omnilogic Server"

17.13.17 Govee

17.13.17.1 Govee API Token
"Authorization API token of this Govee account."

17.13.17.2 Govee Devices
"Request Govee devices from account"

17.13.17.3 Govee Polling Rate
"Polling rate in milliseconds for status updates. Use 0 to disable contact with lights.

Limit is 10,000 calls/day per account so max 10,000 milliseconds for one device, 5,000

milliseconds for two devices, etc."

Page 435

17.13.17.4 Govee Disconnect
"Connect to Govee Server", "Disconnect from Govee Server"

Page 436

17.14 Interactive Page

17.14.1 Expression
"Replacement variables are typically used to identify desired property such as
$$DVR:(123): to show DeviceValue of feature 123. Expression can also be used such
as $DVR:(123): + $DVR:(456):. If text rather than number will be evaluated then
encase the expression in quote. e.g. ""$$DTR(123):"". Full set of replace
variable and expression operators and functions are in mcsMQTT.pdf tables."

17.14.2 Send MQTT Message
“Send MQTT Message using format Topic=Payload. Both Topic and Payload can use

substitution variables and expressions.”

17.14.3 Run HS Script Command or Expression
“Execute a script command such as hs.DeviceValue(123)-hs.DeviceValue(124). Script

uses vb.net syntax"

17.14.4 Run HS Script
"Execute script. Syntax filename,funcname,parms e.g. MyScript.vb,Main,""abc"" or

MyScript.vb,AnArray,{1,2,3} or MyScript.vb"

Page 437

18 Zigbee2MQTT
Zigbee devices are designed for low power operation and communicate over a limited distance. They

typically communicate with a hub that is connected to internet via IP and then cloud logic used to

respond to the Zigbee communication. Smartthings, Echo, Phillips, Osram are typical examples of hub

providers. There is also a Raspberry Pi based hub Raspbee or Conbee that has interface logic local and

does not use the internet. A means is still needed to interface between the RPi and whatever user

control/status interface is employed by the used, such as a HS plug-in.

What is described here is another non-Cloud interface mechanism that employs MQTT protocol so is

able to utilize mcsMQTT or any other MQTT client to interact with Zigbee devices. The cost of the

hardware interface is under $10 and the software is open source community supported.

A good accounting of which interface mechanism is able to handle which zigbee devices is at

https://zigbee.blakadder.com\

Zigbee2MQTT is a node.js software application that utilizes a RF USB dongle to decode Zigbee protocol

and provides the decoded result via MQTT. It also operates in the reverse to accept MQTT commands

and control Zigbee devices. A picture of the covered and uncovered USB dongle is shown in Figure 237.

Figure 237 Zigbee USB Dongle

https://zigbee.blakadder.com/

Page 438

The Wiki for this is at https://www.zigbee2mqtt.io/. The "getting started" step of obtaining the USB

dongle and flashing it is what I have done and will send them to anyone who wants one. Anybody can

also buy the programming tools and USB stick and program it themselves. While there are some

domestic suppliers, most hardware is available from China.

The Running Zigbee2mqtt step

(https://www.zigbee2mqtt.io/getting_started/running_zigbee2mqtt.html) describes the process of

setting up this node.js application on one’s computer. It can be done on any modest Linux system. A

step by step guide for setup on Windows is at https://forums.homeseer.com/forum/lighting-primary-

technology-plug-ins/lighting-primary-technology-discussion/mcsmqtt-michael-mcsharry/1264779-

zigbee2mqtt-on-windows

The Wiki also documents devices that known to work with the USB dongle. It also describes how to add

new devices that come to market. Support by the developer and other users, via the github forum, is

also very good at this time.

The convention that I have observed is that JSON payload is used for MQTT communication in both

directions. A Zigbee device will have one Topic. The parameters of the topic are encoded in the JSON

payload. When commanding the device, such as turning a light on or off the same publish topic is used

as the subscribed on with a “/set” suffix.

18.1 Zigbee2mqtt Firmware
Firmware is now available in three flavors. The “default” is what is being used to flash the CC2531.

There is also a “max stability” and a “max devices”. The repository for the latest firmware for the

coordinator is at https://github.com/Koenkk/Z-Stack-firmware/tree/master/coordinator. It is also

possible to flash the device to be a router rather than a coordinator. The router acts as a repeater and

has no interface to the interfacing computer. Router firmware is at https://github.com/Koenkk/Z-Stack-

firmware/tree/master/router.

There are three types of modules that can be flashed. The simplest is CC2531 which provides a USB

interface to the computer and an antenna etched into its circuit card. Flashing this is per the Wiki

https://www.zigbee2mqtt.io/getting_started/flashing_the_cc2531.html.

A CC2530+CC2591 can be used to improve range with an external antenna. An example is

https://www.aliexpress.com/item/ZigBee-Wireless-Module-CC2530-CC2591-PA-

Module/1831284083.html?spm=a2g0s.9042311.0.0.b9b74c4dxZ8wmN It does not have a USB interface

so something like a FTDI TTL/Serial adapter would need to be connected TX to P0_3, RX to P0_2, 3.3V to

VCC, Gnd to Gnd. This is shown in Figure 241.

To flash this device the CCDebugger is used with Dupont wires to make the connections between the

header pins in the module to the cable from the CCDebugger. Five wires need to be connected (P2_2,

RST, P2_1 VCC and Ground). See Figure 238, Figure 239 and Figure 240. Note the reference cutout slot

of Figure 239 is from the CCDebugger and the cable has a mating protrusion so be careful to connect

pins in the correct orientation.

https://www.zigbee2mqtt.io/
https://www.zigbee2mqtt.io/getting_started/running_zigbee2mqtt.html
https://forums.homeseer.com/forum/lighting-primary-technology-plug-ins/lighting-primary-technology-discussion/mcsmqtt-michael-mcsharry/1264779-zigbee2mqtt-on-windows
https://forums.homeseer.com/forum/lighting-primary-technology-plug-ins/lighting-primary-technology-discussion/mcsmqtt-michael-mcsharry/1264779-zigbee2mqtt-on-windows
https://forums.homeseer.com/forum/lighting-primary-technology-plug-ins/lighting-primary-technology-discussion/mcsmqtt-michael-mcsharry/1264779-zigbee2mqtt-on-windows
https://github.com/Koenkk/Z-Stack-firmware/tree/master/coordinator
https://github.com/Koenkk/Z-Stack-firmware/tree/master/router
https://github.com/Koenkk/Z-Stack-firmware/tree/master/router
https://www.zigbee2mqtt.io/getting_started/flashing_the_cc2531.html
https://www.aliexpress.com/item/ZigBee-Wireless-Module-CC2530-CC2591-PA-Module/1831284083.html?spm=a2g0s.9042311.0.0.b9b74c4dxZ8wmN
https://www.aliexpress.com/item/ZigBee-Wireless-Module-CC2530-CC2591-PA-Module/1831284083.html?spm=a2g0s.9042311.0.0.b9b74c4dxZ8wmN

Page 439

Figure 238 CC2530+CC2591 Header Pins

Figure 239 CCDebugger Cable Pinout

Page 440

Figure 240 CCDebugger to CC2530+CC2591 Flashing Wiring

Page 441

Figure 241 CC2530+CC2951 Wired to USB/Serial

Modules also can be obtained that have the CC2530+CC2951+USB. An example is at

https://www.aliexpress.com/item/RF-TO-USB-CC2530-CC2591-RF-switch-USB-transparent-serial-data-

transmission-equipment/1996354384.html?spm=a2g0s.9042311.0.0.27424c4d2np0bN. They are the

most expensive and also require soldering with jumpers between three pins and ground to perform the

flash as shown in Figure 242. Versions of firmware are available in the repository for each variant.

https://www.aliexpress.com/item/RF-TO-USB-CC2530-CC2591-RF-switch-USB-transparent-serial-data-transmission-equipment/1996354384.html?spm=a2g0s.9042311.0.0.27424c4d2np0bN
https://www.aliexpress.com/item/RF-TO-USB-CC2530-CC2591-RF-switch-USB-transparent-serial-data-transmission-equipment/1996354384.html?spm=a2g0s.9042311.0.0.27424c4d2np0bN

Page 442

Figure 242 RF TO USB (CC2530 CC2591) Wiring

18.2 Zigbee2MQTT on Windows
The segment below was originally published on the Homeseer Message Board

https://forums.homeseer.com/forum/lighting-primary-technology-plug-ins/lighting-primary-technology-

discussion/mcsmqtt-michael-mcsharry/1264779-zigbee2mqtt-on-windows and placed here for easier

reference.

I have been communicating with ptvo on https://github.com/Koenkk/zigbee2mqt...ment-

444345329 for a Windows port of zigbee2mqtt. I have had success. A few pieces of information are

needed to make the port.

1. Need to install driver for CC2531. It is available

at http://www.ti.com/general/docs/lit/g...8&fileType=zip . Unzip to someplace on the computer. Plug

the USB dongle into available USB port. It should show up as an "Other Device" TI CC2531 USB

CDC. Right click on this device and select option to install driver. Browse to "\driver" subfolder of the

unzip. Device should now show up under Ports (COM & LPT) as a COMXX where XX was 15 in my

case.

Restart the computer to remove access dependencies.

Note that I was using a Bluetooth mouse on W7 and when this driver was installed it made the

mouse non-operational. I had to uninstall/remove the driver for the CC2531 before the mouse was

operational.

2. Install node.js from https://nodejs.org/en/download/. I used the Windows Installer (.msi).

3. Create folder to place zigbee2MQTT. I used C:\opt\zigbee2mqtt, but likely can be anywhere. The

https://forums.homeseer.com/forum/lighting-primary-technology-plug-ins/lighting-primary-technology-discussion/mcsmqtt-michael-mcsharry/1264779-zigbee2mqtt-on-windows
https://forums.homeseer.com/forum/lighting-primary-technology-plug-ins/lighting-primary-technology-discussion/mcsmqtt-michael-mcsharry/1264779-zigbee2mqtt-on-windows
https://github.com/Koenkk/zigbee2mqtt/issues/648#issuecomment-444345329
https://github.com/Koenkk/zigbee2mqtt/issues/648#issuecomment-444345329
http://www.ti.com/general/docs/lit/getliterature.tsp?baseLiteratureNumber=swrc088&fileType=zip
https://nodejs.org/en/download/

Page 443

remaining instructions use this location.

4. Open command window as administrator (Windows search for "cmd", right click, run as

administrator)

5. Clone zigbee2MQTT from git repository from command window. (git

clone https://github.com/Koenkk/zigbee2mqtt.git C;\opt\zigbee2mqtt). If git is not yet installed on

Windows then it can be from https://git-scm.com/download/win . It likely is possible to just download

the zip and expand it into a Windows folder, but I did not try this approach.

6. Edit the C:\opt\zigbee2mqtt\data\configuration.yaml. One line to provide the MQTT broker IP

address. One line for the USB Dongle port (e.g. COM15). You can also change the base topic from

zigbee2mqtt if you desire. I have a different topic for each computer where I have the USB Dongle

installed.

7. Navigate to the install folder (CD C:\opt\zigbee2mqtt) in Command Window

7a. (added after initial post). Install zigbee2mqtt dependencies. From command prompt run "npm

install"

8. Run zigbee2mqtt from Command Window (npm start). Feedback will be in the Command Window.

You should also observe the MQTT LWT message being online on your MQTT client, such as

mcsMQTT. If it does not work then it is possible that there is feedback telling you reset the USB

dongle using the button nearest the USB connector. With the case I provided installed it is possible

with a small non-metallic probe angled to the button. One can also drill a hole in the top of the case

above the button. If the case is removed then the plastic latch may break. I provided a flexible top

should the case latch break. One could also use tape as another alternative.

9. To run on windows startup I followed the following process. While it may not be the most elegant it

does work:

9a. Install PM2 from Command Window (npm install pm2 -g)

9b. Create batch file that will be used to start the js application. I called it z.bat with one line contents

or "pm2 start c:\opt\zigbee2mqtt\index.js"

9c. Create shortcut to the bat file (right click, create shortcut)

9d. Copy/Paste shortcut into Windows startup folder. In my case it was at

C:\Users\Dell\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup for user Dell

9e. Restart computer

9f. Observe the node process in Windows Task Manager or observe the LWT MQTT message on a

MQTT client.

18.3 Zigbee Sniffer
Wireshark is used when lower level of information is needed such may be the case for a new device that

does not follow the pattern of others. The capture device for Wireshark is most conveniently a CC2531

that has been flashed with sniffer firmware and whsniff to read the interface and pipe data to

Wireshark. A how-to is available at

https://www.zigbee2mqtt.io/how_tos/how_to_sniff_zigbee_traffic.html. It includes the download links

for the firmware, whsniff and Wireshark with an orientation to an Ubuntu install.

https://github.com/Koenkk/zigbee2mqtt.git
https://git-scm.com/download/win
https://www.zigbee2mqtt.io/how_tos/how_to_sniff_zigbee_traffic.html

Page 444

In my case I separated the Wireshark operation on Windows from the sniffer operation on a RPi. An SSH

connection was used to pipe the collected data from whsniff on RPi to Wireshark on Windows.

Plink.exe, which is part of the PuTTY download is used to establish the SSH connection. From the

Windows command prompt one of the following two commands are used. The first can be used if a

login with superuser privileges is possible. The second is a login using authentication key rather than

password.

"C:\Program Files\PuTTY\plink.exe" -ssh root@192.168.0.200 -pw root_password "/opt/whsniff-

1.1/whsniff -c 11" | "C:\Program Files\Wireshark\Wireshark.exe" -k -i -

"C:\Program Files\PuTTY\plink.exe" -i "C:\Users\Dell\Desktop\id_rsa.ppk" pi@192.168.0.200 "sudo

/opt/whsniff-1.1/whsniff -c 11" | "C:\Program Files\Wireshark\Wireshark.exe" -k -i –

To setup authentication a public key needs to be installed on the RPI in file ~/.ssh/authorized_keys. I

used WINSCP to create the file and paste the text of the public key that was generated on the Windows

computer. Note that Linux path “~/” is “/home/pi/” for user “pi”.

The private key is stored in a file on the computer running Wireshark. In the above command line, it is

at “C:\Users\Dell\Desktop\id_rsa.ppk”, but can be any name and located anywhere on the computer.

The private/public key pair can be produced using PuTTYgen which is also part of the PuTTY download.

No passphrase should be included for this use. A walkthrough of using PuTTYgen is available at

https://www.ssh.com/ssh/putty/windows/puttygen.

18.4 New Zigbee Devices
In general, as new devices are discovered they are added to the repository so new downloads of

Zigbee2MQTT will have the information to discover them. A list that was originally compiled on March

2019 was posted at https://forums.homeseer.com/forum/homeseer-products-services/general-

discussion-area/1294291-list-of-zigbee-non-cloud-supported-devices that compares three non-cloud

interfaces including Zigbee2MQTT.

I have also been working the characterization of the zigbee remote RGBGenie and for the most part

have the remote interfaced through Zigbee2MQTT. The discussion is at

https://github.com/Koenkk/zigbee2mqtt/issues/642#issuecomment-477231522 I am not certain if it will

be added to the main repository or not. The delta for this device consists of edits to devices.js and

fromZigbee.js

devices.js

// RGBGenie

{
 zigbeeModel: ['ZGRC-KEY-013'],
 model: 'ZGRC-KEY-013',
 vendor: 'RGBgenie',
 description: '3 Zone remote and dimmer',
 supports: 'onoff dim scene control',
 fromZigbee: [fz.generic_battery,
 fz.ZGRC013_brightness_onoff, fz.ZGRC013_brightness, fz.ZGRC013_brightness_stop,
 fz.ZGRC013_cmdOn, fz.ZGRC013_cmdOff,

https://www.ssh.com/ssh/authorized_keys/
https://www.ssh.com/ssh/putty/windows/puttygen
https://forums.homeseer.com/forum/homeseer-products-services/general-discussion-area/1294291-list-of-zigbee-non-cloud-supported-devices
https://forums.homeseer.com/forum/homeseer-products-services/general-discussion-area/1294291-list-of-zigbee-non-cloud-supported-devices
https://github.com/Koenkk/zigbee2mqtt/issues/642#issuecomment-477231522

Page 445

 fz.ZGRC013_scene,
],
 toZigbee: [],
 configure: (ieeeAddr, shepherd, coordinator, callback) => {
 const device = shepherd.find(ieeeAddr, 1);
 const cfg = {direction: 0, attrId: 0, dataType: 16, minRepIntval: 0, maxRepIntval: 1000,
repChange: 0};
 const actions = [
 (cb) => device.bind('genOnOff', coordinator, cb),
 (cb) => device.foundation('genOnOff', 'configReport', [cfg], foundationCfg, cb),
];

 execute(device, actions, callback);
 },
},

fromZigbee.js

ZGRC013_cmdOn: {
 cid: 'genOnOff',
 type: 'cmdOn',
 convert: (model, msg, publish, options) => {
 const button = msg.endpoints[0].epId;
 if (button) {
 return {click: `${button}_on`}
 }
 },
},
ZGRC013_cmdOff: {
 cid: 'genOnOff',
 type: 'cmdOff',
 convert: (model, msg, publish, options) => {
 const button = msg.endpoints[0].epId;
 if (button) {
 return {click: `${button}_off`}
 }
 },
},
ZGRC013_brightness: {
 cid: 'genLevelCtrl',
 type: 'cmdMove',
 convert: (model, msg, publish, options) => {
 const button = msg.endpoints[0].epId;
 const direction = msg.data.data.movemode == 0 ? 'up' : 'down';
 if (button) {
 return {click: `${button}_${direction}`}
 }
 },
},
ZGRC013_brightness_onoff: {
 cid: 'genLevelCtrl',
 type: 'cmdMoveWithOnOff',
 convert: (model, msg, publish, options) => {
 const button = msg.endpoints[0].epId;
 const direction = msg.data.data.movemode == 0 ? 'up' : 'down';
 if (button) {
 return {click: `${button}_${direction}`}
 }

Page 446

 },
},
ZGRC013_brightness_stop: {
 cid: 'genLevelCtrl',
 type: 'cmdStopWithOnOff',
 convert: (model, msg, publish, options) => {
 const button = msg.endpoints[0].epId;
 if (button) {
 return {click: `${button}_stop`}
 }
 },
},
ZGRC013_scene: {
 cid: 'genScenes',
 type: 'cmdRecall',
 convert: (model, msg, publish, options) => {
 return {click: `scene_${msg.data.data.groupid}_${msg.data.data.sceneid}`};
 },
},

Page 447

19 KNX-MQTT-Bridge
KNX-MQTT-Bridge is a node.js application that runs on Windows or Linux that contains the protocol

translation between KNX and MQTT. It can be used as a simple way to integrate a KNX environment

with Homeseer.

The install and usage instructions are at https://www.npmjs.com/package/knx-mqtt-bridge

On my Windows install the package was placed at

C:\Users\Dell\AppData\Roaming\npm\node_modules\knx-mqtt-bridge. At this location was a sample

config.yaml that I edited for my setup with the only changed needed was the IP address of the MQTT

broker as shown in red below. The default is ‘localhost’. This will be the IP of Homeseer unless an

external MQTT broker is running. I also removed the MQTT broker login credentials as shown in blue

since I do not use them with my broker. Likely did not need to do this as the broker would have ignored

the credentials.

One of 'error', 'warn', 'info', 'verbose', debug', 'silly'

loglevel: 'silly'

One of value-only, full

value-only - converts any known group addresses to its value

full - a json object containing value. Additionally also name and unit type for known group addresses.

#messageType: value-only

messageType: full

Ignore unknown group addresses

ignoreUnknownGroupAddresses: false

knx:

 # ETS exported group addresses

 etsExport: 'knx.xml'

 # Configuration passed to the KNX library

 options:

mqtt:

 # URL to MQTT broker

 url: 'mqtt://192.168.0.17'

 # Configuration passed to the MQTT library

 #options:

 #username: 'root'

 #password: 'root'

 # Prefix to mqtt topic

 topicPrefix: 'knx'

 # Set retain flag on messages

 retain: false

The KNX configuration of endpoints and routing in the KNX network is the file ets.xml stored in the same

location as config.yaml. While it is not required for KNX-MQTT-Bridge, it is required for the mcsMQTT

integration because this file contains the encoding used for each of the datapoints. The encodings are

described at http://www.sti.uniurb.it/romanell/Domotica_e_Edifici_Intelligenti/110504-Lez10a-KNX-

Datapoint%20Types%20v1.5.00%20AS.pdf but an end-user should never need to get into this level of

https://www.npmjs.com/package/knx-mqtt-bridge
http://www.sti.uniurb.it/romanell/Domotica_e_Edifici_Intelligenti/110504-Lez10a-KNX-Datapoint%20Types%20v1.5.00%20AS.pdf
http://www.sti.uniurb.it/romanell/Domotica_e_Edifici_Intelligenti/110504-Lez10a-KNX-Datapoint%20Types%20v1.5.00%20AS.pdf

Page 448

information. There are many different encodings used in KNX and ETS5 is the only place where this

knowledge is maintained. This is very similar to UPStart in the UPB networks.

For my testing I used a dummy file that I modified from a file I googled that contains the following. Of

particular need is the group address to where communications will occur shown in red and the

datapoint encoding type shown in blue.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<GroupAddress-Export xmlns="http://knx.org/xml/ga-export/01">

 <GroupRange Name="Beleuchtung" RangeStart="2048" RangeEnd="4095">

 <GroupRange Name="Untergeschoss" RangeStart="2048" RangeEnd="2303">

 <GroupAddress Name="Tasmota Light Status 1/1/0" Address="2/2/2" DPTs="DPST-1-1" />

 <GroupAddress Name="Tasmota Light Button 1/1/0" Address="2/2/3" DPTs="DPST-1-1" />

 <GroupAddress Name="Tasmota Light Control 1/1/0" Address="2/2/1" DPTs="DPST-1-1" />

 <GroupAddress Name="Tasmota Light Temperature 1/1/0" Address="2/2/4" Description="1/1/0"

DPTs="DPST-9-1" />

 <GroupAddress Name="Tasmota Light Temperature Reply 1/1/0" Address="2/2/5"

Description="1/1/0" DPTs="DPST-9-1" />

 </GroupRange>

 <GroupRange Name="Erdgeschoss" RangeStart="2304" RangeEnd="2559">

 <GroupAddress Name="Flur Halogendeckenspots " Address="1/1/0" Description="auch Garderobe

(wird mitgeschaltet)" DPTs="DPST-1-1" />

 </GroupRange>

 </GroupRange>

</GroupAddress-Export>

To run KNX-MQTT-Bridge I opened a command window, and used the following two commands. The

first navigates to the install location. The second starts it.

CD C:\Users\Dell\AppData\Roaming\npm\node_modules\knx-mqtt-bridge

npm start

For auto-start on login I believe a similar approach as was disclosed for Zigbee2MQTT can be used. This

is step 9 shown in 18.2. I believe the Linux install of KNX-MQTT-Bridge does auto start, but I did not go

back and confirm this.

Again for my testing I use a ESP8266 that was programmed with Tasmota firmware that had KNX

support enabled in the source. I set it up as AiLight plus a DS18B20 temperature sensor. More

information on the KNX Tasmota firmware support is at https://github.com/arendst/Tasmota/wiki/KNX-

features.

https://github.com/arendst/Tasmota/wiki/KNX-features
https://github.com/arendst/Tasmota/wiki/KNX-features

Page 449

Figure 243 Tasmota Device for KNX Integration

Page 450

Figure 244 Tasmota KNX Test Configuration

Page 451

The Tasmota device sends telemetry for the temperature sensor and ON/OFF changes as the power

toggle button is used. This then becomes visible in mcsMQTT. Figure 245 and Figure 246 show this after

the On/Off message was Associated to HS device 594.

Figure 245 Association Tab for KNX Test Messages

Figure 246 KNX Device in HS

When the HS true button for device 594 is pressed then a MQTT message is sent on Topic

knx/2/2/2/write by mcsMQTT which is routed by the MQTT Broker to KNX-MQTT-Bridge. The bridge

translates this into a KNX protocol and provides feedback in the console window. This is the white

portion of Figure 247. The black portion of this figure shows the feedback as the Tasmota device

provides an update of the temperature sensor reading over the KNX network and it forwards this via

MQTT where it is received by mcsMQTT.

Figure 247 KNX-MQTT-Bridge Terminal Window Feedback

Page 452

The KNX network has a routing node similar to the MQTT Broker or xAP hub. This is normally a

dedicated piece of hardware/firmware. For my testing I used software emulation that I installed on a

RPi/Buster. It is available at https://github.com/knxd/knxd. Those which already have KNX network

installed will have this router already installed.

With this test setup the Toggle button on Tasmota could be used to change the relay state and this

updated state was reflected in HS device. A change of the HS device would change the relay and

Tasmota status to complete the bidirectional communication.

https://github.com/knxd/knxd

Page 453

20 Applications

20.1 Applications with Tasmota
The Sonoff Basic from ITEAD is one instance of an ESP8266 application. Multiple software packages are

available including Tasmota that has been used in this case. ITEAD makes several other devices that

Tasmota can be easily installed. Other manufactures also produce ESP8266-based devices. The

dominant firmware in these devices is Tuya, also known as Smart Life. The firmware on these canb e

changed to Tasmota using Tuya Convert application on RPi. Development boards such as Wemos D1

Mini or NodeMCU provide a more generalized microcontroller interface application but do not have the

backaging or power supply built in.

20.2 Sonoff Basic (Original Version) Firmware Upload
There are two means to upload software to the Sonoff. Initially it is done via 3.3V level serial with

USB/Serial adapter. Make certain it is at 3.3V levels and not 5V or +/-12V. There are several tutorials on

the web for this process. Essentially hold the black button down (Ground GPIO0) and plug in the

adapter then release the button. Using the Atom/VSCode/Arduino environment upload the compiled

project. I have been using Atom based upon the tutorial provided at

https://www.youtube.com/watch?v=n4MDRm2yAJg.

After the binary has been flashed then it needs to be configured. The easiest way, if not already done

be editing user_config.h before building the binary, is to use a serial connection and a program like

Termite (https://www.compuphase.com/software/termite-3.4.zip) to provide commands for

configuration. The baud rate should be set to 115200. The list of available commands is at

https://github.com/arendst/Sonoff-Tasmota/wiki/Commands with the most important ones for the

initial install being SSId <ssid> and Password <pwd> to establish a Wifi connection. After this is done

then a browser can be used to configure the module to establish the MQTT connection and other basic

setup.

Another approach to initial configuration is by quickly pushing the Sonoff button 4 times and looking for

a new SSID available on your computer’s Wifi connection. The Sonoff will be serving HTTP from

192.168.4.1. Connect to this new Wifi SSID and put 192.168.4.1 in browser URL to get the config page.

Setup the desired WiFi SSID and password that is used for your network. After it is saved it will restart

and try to connect to this SSID. It may require a power cycle if auto-reset is not successful.

Once the browser connection has been established the Console of the Tasmota page can be used to

enter commands just like was done with serial connection. It is also possible to batch together a set of

commands using “;” separator. This way a text file can be saved and pasted into command line.

After the initial upload then it can be done more easily and quickly with Wifi connection from the

browser that is running the installed Tasmota software on the Sonoff. This is especially true for

firmware updates that can be done via Wifi rather than a serial connection.

The firmware, which is the same Tasmota-variant firmware described for devices in this manual is at

http://mcsSprinklers.com/mcsTasmota.zip. This same firmware can be used for all other applications of

the Sonoff devices in this manual as of June 2018.

https://www.youtube.com/watch?v=n4MDRm2yAJg
https://www.compuphase.com/software/termite-3.4.zip
https://github.com/arendst/Sonoff-Tasmota/wiki/Commands
http://mcssprinklers.com/mcsTasmota.zip

Page 454

The source, based upon Tasmota 5.9.1 can also be made available for anyone interested. There is also a

firmware based upon Tasmota 6.0.0a that is available under mcsTasmota6

http://mcsSprinklers.com/mcsTasmota6.zip. This contains only the addition of the irrigation control

logic.

These zip files contain two binary (.bin) files. One is a small image designed to only serve as a bootstrap

to load the other binary. Sonoff units typically contain 1024K flash. To do OTA the running program

needs to leave enough of the flash space to hold the new binary. Tasmota6 is over 512K so the minimal

must first be installed and then when running the minimal image the desired one can be installed.

There appears to be a configuration layout change between 5.x and 6.x Tasmota. What I have found is

that going from 5.x to 6.x the minimal image for 5.x should first be flashed. This will retain the WiFi

settings in the minimal so it will run without any additional configuration. Once 5.x minimal is installed

then the full 6.x binary can be installed. The settings then need to be edited. It may be possible to

backup and restore settings, but I have not attempted this.

The failure mode I ran into when trying to toggle between 5.x and 6.x is that the SSID will be blank so

WiFi connection lost. In my case I flashed via Serial the new image when this happened, but it should be

possible to use Termite.

http://mcssprinklers.com/mcsTasmota6.zip

Page 455

20.3 WiFi Garage Door Control

20.3.1 Original GDO Tasmota 5.9.1
Modification to version Tasmota 3.9.1 was made to support a Wifi Garage Door interface. In this case

the Garage Door is characterized by a pushbutton to toggle the door from the open to close position and

two closed-contact sensors to become active when the door is in the open and closed positions. The

Sonoff relay is used for the pushbutton to model this and two of the discrete inputs used for the two

door position sensors. The Tasmota software was updated to recognize the status of the two inputs to

be OPEN, CLOSED, INDETERMINATE and OPEN&CLOSE, to specify the wait time expected for the door to

get from open to closed, and a four time retry when the desired state is not being achieved.

The user control to open or close the garage door is with HTTP, MQTT or Echo/Alexa. The desired

position is commanded (ON=Open, OFF=Closed) and the Sonoff will use the relay to command the

pushbutton as necessary to achieve the desired state. If the door is already at the desired state when a

new command is received then no pushbutton action is commanded.

The status of each event is provided with MQTT including when the pushbutton transitions and when

the door position reaches a new state. If the desired state is not reached after four retries then a FAIL

Topic will be reported. OPEN&CLOSED state is invalid and indicate a hardware malfunction.

INDETERMINATE are expected when the door is moving, but if it remains after the timeout period then

it is also an indication that some service is needed such as removing obstructions or again a hardware

failure.

Normally the Sonoff Basic relay is used to control power line load. A cut and jumper are used to

disconnect the line power from the relay and route the output connector to the two relay outputs so it

can be used as a dry contact. The red oval in Figure 248 shows where a hacksaw was used to cut the

board to sever the two thick soldered runs and then a small wire soldered between the two cuts. When

making the cut the saw blade can be guided by the edge of black relay next to the resistor next to the

relay. Make certain to cut deep enough to where the ½ watt resistor is soldered on the board top side

to assure the relay connection to the main voltage is fully severed. Use ohm/volt meter to confirm no

mains power is connected to the relay.

The yellow circle shows where an additional input can be wired by soldering directly onto the corner pin

of the ESP8266. This is GPIO4. It is not necessary as other inputs available on header pins can be used.

At the time of construction, it was not clear if the one normally used for serial port Tx could be used for

this purpose and still retain the debug environment. It turned out to be available. Soldering directly

onto the small pin is difficult and needs very low gauge wire to properly transfer heat for a good solder

connection. Note also that the 10K pull-up resistor already connected to GPIOI14 via surface-mount is

not done for GPIO4 so somewhere a 10K resistor needs to be connected between the GPIO4 wire and

3.3V to act as a pull-up to have a positive inactive signal input.

All wires were routed using Cat3/5 to a short pigtail with RJ11 connector. A mating RJ11 is used on this

install. This provides for an easy disconnect should it be necessary for later maintenance. In the figure

the orange GPIO14 and two white (orange/white & green/white) ground wires can be seen. The GPIO4

was merged onto the green. The blue and third white (blue/white) is connected to the two output pins

which are now connected to the two relay outputs. All wires were then routed to the top of the board

Page 456

where they exit the case under the strain relief. Note also the two dabs of hot glue on the small GPIO4

wire to provide strain relief on the fragile direct solder connection.

Figure 248 Sonoff Hardware Modification

A browser interface is used to setup the environment parameters. Figure 249 shows the Tasmota

software configured as a Sonoff Basic and Switch 1 and Switch 2 are used for the CLOSED and OPEN

status inputs. Note in this figure it shows GPIO3 as the OPEN status input, but with the hardware

configuration shown in Figure 248 the GPIO4 rather than GPIO3 would be selected.

The input discrete name will be the last part of the Topic when the status of the two discrete inputs

change. The relay pulse duration is the time the simulated pushbutton is depressed to activate the

garage door motor. The max time is the length of time it takes for the door to move from open to

closed plus some margin.

Under Figure 249 the circuit board top side documents the pin order where the connections are made

with the built-in pushbutton included to provide orientation reference. Note that this figure was

captured with first generation modification of Tasmota. Current mcsTasmota firmware will use 56

DoorOpn and 57 DoorClsd as the two sensor input selections.

Page 457

The MQTT setup is shown in Figure 250. The MQTT broker is the IP or name for Host. The first part of

the MQTT Topic is the Topic entry. Figure 251 is the Other Configuration page where MQTT is enabled,

and the Echo/Alex information is entered.

Figure 249 Module Configuration

On Board Interface Pins & Controls

Page 458

GPIO-0 Button (used for boot control and manual pushbutton input)
Vcc 3.3V (for development testing power)
Door Open Input [Switch 2] (Door confirmed open when input at ground)
Serial TX (for serial monitor debug)
Ground
Door Closed Input [Switch 1] (Door confirmed closed when input at ground)

Page 459

Figure 250 MQTT Configuration

MQTT Control
GarageDoor/cmnd/Power 1 – to open garage door (ON payload can also be used)
GarageDoor/cmnd/Power 0 – to close garage door (OFF payload can also be used)

Page 460

Figure 251 Other / Echo Configuration

Friendly name is the Echo Alexa name

Echo Control (native)
Alexa garage door ON (to open garage door)
Alexa garage door OFF (to close garage door)

Echo Control (routine in Alexa App to recognize Open and Close and control the garage
door device)
Alexa garage door Open (to open garage door)
Alexa garage door Close (to close garage door)

When putting the modified Sonoff into service for Garage Door control the relay and two
discrete inputs were soldered and routed to a RJ11 connector to provide ease of install

Page 461

and later maintenance. The relay output connector on the Sonoff was no longer used.

Figure 252 shows the installation provisions that were made. For the RJ11 the following
was used, but any layout that has same wiring through the connector can be done.

RJ11 Pin Wire Color Function Wire to Garage Door
1 Orange/White GPIO14-Gnd Black - Common
2 Orange GPIO14 Red – Door Closed Contact
3 Green GPIO4 Red – Door Open Contact
4 Green/White GPIO4-Gnd Black – Common
5 Blue Relay Yellow – Common
6 Blue/White Relay Green - Pushbutton

Figure 252 Garage Door Installation Connections

Also shown in Figure 252 is an adapter that was made from a copper 1/2 inch plumbing pipe to
provide slip-on contacts to the two Door-Open and Door-Closed switches on the Garage

Door. Cat 5 was then used between the pushdown connection on each pins 2 and 3 to a

spade connector similar to the left side of the fabricated adapter. There may be

commercial versions of this adapter, but I did not find them locally so just cut two

short length of the copper pipe, bend one piece to an S, soldered and filed edges smooth.

Page 462

20.3.2 Updated GDO Tasmota 8.4.0.3
The garage door control has been ported to Tasmota version 8.4.0.3 using features built into Tasmota

rather than a hack of the Tasmota code. The same functionality exists as in the original version, but has

been modernized for long term maintenance. There is no change in the hardware interface. Binary for

this version is at http://mcsSprinklers.com/mcsGDO_8403.zip.

The following console/MQTT configuration options are utilized

Pulsetime1 <#> -- duration of the pushbutton press in 0.1 seconds (default 10 if not set)

Pulsetime2 <#> -- time allowance for door to open or close in seconds+100 (e.g. 130 is 30 seconds)

Poweronstate 0 -- forced by firmware to 0 so pushbutton is off on power up

Switchmode1 2 (invert) - set if open switch status is ground when active

Switchmode2 2 (invert) - set if closed switch status is ground when active

SetOption114 1 -- to enable the GDO functionality

SetOption115 1 -- to prohibit Echo control of "Open Door" or "Door On", Close/Off control not affected

The two Pulsetime options replace the hacked browser interface for setting up the timing for the door

control. Switchmode parameters are only needed if the switch input is at ground potential to indicate

an active state of opened or closed.

SetOption114 must be 1 to enable the GDO logic. If left at 0 then the relay control will follow normal

Tasmota logic.

SetOption115 affects the WeMo emulation. If set to 1 then Echo can only be used to close the door.

Any open attempts with Echo will be ignored. If left at 0 then both directions of control via Echo are

enabled.

The new SetOptions will not be found in the online Tasmota command list. No changes made to the

other commands other than forcing poweronstate to off and power control is not a relay control, but

abstracted to represent a desired position of the door.

power ON/1 command is used to open the door

power OFF/0 command is used to close the door

power TOGGLE/2 command will command door to opposite position. If current position cannot be

sensed then it will act like OFF command.

The actual control of the pushbutton can be tracked with the RESULT or POWER topics

Status is reported in the SENSOR topic. It will have JSON entries for the two switches and a 4-state

composite for the door position such as below

........MQT: GarageDoor/SENSOR = {"Time":"2020-08-

29T21:52:47","Switch1":"ON","Switch2":"OFF","Door":"Closed"}

STATE topic is unchanged with info about the device.

http://mcssprinklers.com/mcsGDO_8403.zip

Page 463

The GDO logic is also designed to work with only one switch to detect open position. Use the

switchmode command to assign the correct polarity for this switch. It is actually a door closed switch

then reverse the polarity from what would be the case if is a door open switch. Do no define only

Switch2, but define Switch1 for the case of a single switch sensor.

Figure 253 GDO GPIO Setup

Page 464

20.4 Pulse Counter
I have been using DS2423 1-wire counters to count pulses for measuring things such as water meter.

The stock Tasmota firmware was used with a Wemos D1 Mini to satisfy this need. This installation

actually used one input as a counter and one input as a switch. The counter was for gallons of water

use. The switch was for indication if fireplace fan turned on or off. Configuration is show in Figure 254.

Low pass filter signal conditioning on the GPIO12 switch input was provided by 15K resistor attached to

3.3V and 2200 uF capacitor to ground. This filtering was also done using Tasmota rule for both inputs.

Without this conditioning the wire run between the fireplace fan control and the Wemos D1 Mini would

pick up extraneous noise spike inputs.

Figure 254 Counter Module Configuration

Page 465

Rules were used to augment the counter and the notification inputs. At boot the counter was

configured and debounce set for inputs. At midnight reset the counter. On change of the fan switch

input publish MQTT to IRSend device to bump up or down the TV volume to account for fan noise.

Rule1

Rule1 ON system#boot DO backlog CounterType1 0; CounterDebounce 500; SwitchDebounce 1000

ENDON ON Time#Minute=001 DO counter1 0 ENDON ON Power1#State=1 DO publish

IRSend/cmnd/Power2 0 ENDON ON Power1#State=0 DO publish IRSend/cmnd/Power2 1 ENDON

Page 466

20.5 Low Volume Water Flow

A low cost ($10) water flow meter is available from Digiten that is interfaced to with a 5V supply and a

square wave output toggling between 0 and 5V as water flows through it. Two challenges exist to use

Sonoff Basic to interface this sensor. One is that 5V is needed to support the sensor and the other is

that the input provided by the senor will reach 5V. The Sonoff working voltage is 3.3V.

The first issue is resolved is by picking off the voltage from the Sonoff power supply before it is

regulated. The Digiten has a wide voltage range so anything available between 4 and 12V will suffice. It

turns out that 5V is available with the pickoff point shown on Figure 255 Sonoff 5V pickoff. Note board

in this figure has been modified to support dry contact relay rather than mains voltage across the relay,

but it does not matter for this application.

A voltage divider with 4.7K ohm resistors was used to address the sensor input voltage.

This sensor has three wires and the nomenclature is printed on the device. The red is the 5V. Black is

common ground. Yellow is the pulse output which floats up to the 5V and is pulled down to ground.

The 4.7K resistors are wired in series between the 5V and ground thus producing 2.5V at the point

between the two resistors. The yellow wire as well as the GPIO14 from the pin header of the Sonoff is

connected to this central point between the two resistors. When the Digiten output floats high the

voltage remains near 2.5v. When the Digiten output is pulled to ground this central point is also pulled

to ground. This means that the Sonoff GPIO14 will see either 0 or 2.5V which are acceptable inputs for

the ESP8266.

Page 467

Figure 255 Sonoff 5V pickoff

The configuration of the Tasmota firmware is the same as the configuration used for the pulse counter

described in Section 20.4 except Figure 254. This water usage counter has a different gallons/pulse

relationship. In this case I elected to use Topic of Ounces. Each pulse (count) represents 0.87 ounces of

water flow. This will need to be calibrated for each user’s situation by running a known amount of

water through the sensor and determining how many counts were recorded.

Expect about 5% accuracy depending upon flow rates. I selected the model FL-S402B that has a working

range of 0.3 to 10 liters/minute (10 to 338 ounces/minute) (0.17 to 5 ounces/second) which is in the

range of the osmosis system I am monitoring.

Figure 256 shows the configuration. Note the main Tasmota Sonoff page will show the counts before

any scaling performed. The MQTT topic will be transmitted with the scaled value.

Page 468

Figure 256 Filtered Water Flow Calibration Seteup

Page 469

20.6 Multiple Light Control on Single Switch
One wall toggle switch is wired to three ceiling lights each illuminating a different part of the room. The

desire is that each light have an independent control, but it is not possible to rewire with three

independent toggle switches. To deal with the problem a Sonoff 4CH Pro has been deployed with

standard Tasmota firmware.

Access to the light cans is available to allow separation of the line power to each light. The power line

that was originally daisy-chained between each light can is routed to the power input of the 4CH. The

light power wire at each can was removed from the daisy-chain and separate wire added and installed in

each of inputs 1, 2 and 3 of the 4CH. The common return also was routed to the 4CH to complete the

power circuit.

The master toggle switch providing power remains in the ON position for normal operation. To assure

that the toggle switch works as before the automation addition it is necessary to have the 4CH turn each

light on when initially powered. This means that toggle switch provides the OFF control by removing

power and Sonoff 4CH provides ON control by Echo or MQTT. The default Tasmota configuration is that

relay return to the state they were that last time power existed to the 4CH. This can be changed to

always initially turn relays on by changing the user.config prior to initially flashing or by sending MQTT

message. I used the MQTT approach by publishing one time:

"FamilyLights/cmnd/PowerOnState" with payload of “1”

The same firmware used for other Sonoff devices was installed and configured to be a 4CH. It was

configured to be a 4CH and MQTT parameters setup to provide the desired control as shown in Figure

258 and Figure 259. Control is also available via Amazon Echo using the Phillips HUE emulation within

Tasmota.

Upon testing it was discovered that Echo control was not successful. Google research identified that the

issue was with Amazon with lack of HTTP protocol adherence. A workaround was found at the URL and

content of the screen shot below. In essence it adds an OR condition when parsing the HTTP header.

Page 470

Page 471

Figure 257 Sonoff 4CH Module Tasmota Main Page

Page 472

Figure 258 Sonoff 4CH Tasmota Configuration

Page 473

Figure 259 Sonoff 4CH MQTT Configuration

Page 474

Figure 260 HUE Emulation Setup

Page 475

20.7 Failback Irrigation Controller
Irrigation control can be performed with a timer, with a smart timer or with an automation system

scheduler that controls relatively dumb relay-like valve controllers. The Sonoff devices with relay(s) can

be used to control irrigation on a schedule and to be slaved to a more intelligent irrigation control

system.

The concept of operation is that the Sonoff unit will respond to commands to turn a relay (valve) ON or

OFF. The Sonoff will monitor the ON and OFF intervals and if either an ON or OFF command is not

received in a programmed period of time then the Sonoff will perform the ON and OFF actions per the

programmed interval.

The Sonoff 4CH Pro makes for a good four channel irrigation control system. Multiples of these can be

used to expand beyond four valves. Many of the Sonoff units such as the Basic and the 4CH (not Pro)

have internal connections so the relay is used to control mains voltage. If these are used then hardware

modification is needed to isolate the relay from mains so 24VAC can be used with the relays. The Sonoff

Basic relay isolation modification was described in Section 20.3.

The board of the 4CH Pro R2 is shown in Figure 261. In this case a 5VDC connection was made to a wall-

wart in the upper right. During flashing an external power supply is desired to assure adequate current

is available. In the lower left is the header that was soldered in place from which Gnd, Tx and Rx are

connected to the USB/Serial adapter used for flashing and serial monitoring. The board also shows two

LED being illuminated on the left. The red is in the Relay 1 position. The blue will illuminate when any

of the four relays are ON. On the right of the board are four pushbuttons that can be used to manually

control each relay. The 4CH Pro also has a RF connection to remotely control the valves. This is useful

for field testing of the irrigation system. The RF use has not been attempted, but it may be necessary to

pair the RF buttons with the unit prior to flashing Tasmota. Internet search should provide more

information in this area.

Page 476

Figure 261 Sonoff 4Ch Pro R2 Circuit Board

The failback parameters and value control are communicated via MQTT. Normal valve control using a

HS device is setup as shown in Figure 262. The devices can then be assigned to events or included in an

irrigation schedule such as with mcsSprinklers.

Page 477

Figure 262 HS Device Setup for Irrigation Control

The failback, or monitoring parameters are also delivered via MQTT. The set of topics for monitoring are

shown in the Publication List of Figure 264 and Figure 263. They consist of:

IrrigationOnMinutes (with numeric suffix for relay number if for specific relay on module)

IrrigationOffMinutes (with numeric suffix for relay number if more than one on module)

IrrigationNextMinutes (with numeric suffix for relay number if more than one on module)

IrrigationStartHour (with numeric suffix for relay number if more than one on module)

IrrigationMode (payload can be OFF/ON/AUTO/BLINK or 0/1/2/3)

The irrigation feature of mcsTasmota 5.9.1e and later is enabled by sending a topic or IrrigationMode.

To remove the irrigation feature from the module the device needs to be reflashed with the memory

erased so settings (including irrigation mode) are reset.

The Figure 264 failback schedule has been setup to run each valve for 30 minutes after a period of three

days (3*24*60= 4320 minutes) without the valve having been turned ON. It also specifies that no valve

will be turned ON before 6 AM. The last topic is to enable (or disable) the irrigation failback monitoring.

It was specified to run in IrrigationMode of AUTO/2 . This means that there will be a master irrigation

controller that will be providing IrrigationNextMinutes topics with payloads that indicate the number of

minutes in the future that the next irrigation cycle is expected to run. When the expected future time

arrives one of four things will occur.

1. The normal situation is that the master controller will publish a cmnd/POWER=ON message and

the relay valve will be turned ON.

2. The second is that the master controller has revised the number of minutes in the future and

sent a subsequent IrrigationNextMinutes message.

Page 478

3. The third is that the master controller failed and did not send the cmnd/POWER=ON messages.

In this case the IrrigationOffMinutes value may become (see condition 4) the determining time

when the relay is turned on by the firmware.

4. The last is the same as the third, but in this case the IrrigationOffMinutes has elapsed before the

IrrigationNextMinutes expired and in this case the firmware will turn the relay ON when the

IrrigationNextMinutes expires.

The firmware will operate without consideration for the IrrigationNextMinutes messages when

IrrigationMode is set to ON/1. In essence there is no master irrigation controller available. The relay

valve ON and OFF intervals are determined by IrrigationOffMinutes and IrrigationOnMinutes messages.

 When IrrigationMode is set to BLINK/3 then it disables irrigation scheduling and reporting in the STATE

message. BLINK is not intuitive, but is the equivalent command in Tasmota that gives a value of 3.

When IrrigationMode is set to OFF/0 then it disables scheduling, but still reports irrigation status in the

STATE message.

Figure 263 Sonoff Basic Setup Test for Irrigation Control

Page 479

Figure 264 Irrigation Monitoring Topics

If no ON and OFF command is received before the Next and Off topics then the Sonoff will perform an

irrigation schedule starting at 6 AM every 3rd day and run the valves in sequence for 30 minutes each.

Each of these relays/values can be setup with different on, off, and start parameter values even though

the sample shown uses the same values for each of the four.

Inputs such as rain sensors, water use counters or external enables can be wired if desired and values

available via MQTT. They are not used as part of the failback monitoring for irrigation. On the 4CH Pro

the GPIO2 input is available on the same header as the TX and RX and is labeled as SDA. GPIO1 and

GPIO3 are also available after the flashing is complete and use of the serial connection is no longer

needed.

In Figure 266 GPIO2 has been selected as Switch1. This switch has been implemented in the firmware as
a local override of the Irrigation Mode such that when the input is grounded the irrigation mode will be
considered OFF. Note that the Sonoff will not boot when GPIO2 is grounded at power-on so if this
switch is used it needs to be set to enable irrigation when powered up. When the switch is toggled a
MQTT topic such as “IrrigationEnable/cmnd/POWER1=ON” is published. The topic is based upon the

Page 480

input topic entered in e 51. At this time and at the telemetry rate (default 5 mins) a state message will
be published such as

IrrigationValve/STATE={"Time":"2018-05-31T11:09:59", "Uptime":0 0, "Vcc":3.458, "POWER1":"OFF",

"POWER2":"OFF", "POWER3":"OFF", "POWER4":"ON", "Irrigation":{ "IrrigationMode":"AUTO" ,

"Time1":"14", "Time2":"8", "Time3":"10", "Time4":"15"} , "Wifi":{"AP":1, "SSId":"U", "RSSI":78,

"IPAddress":"192.168.0.29", "APMac":"78:8A:20:84:48:1D"}}

12:10:22 PM Received

The “Irrigation:” section of the STATE message contains two parts. One is the irrigation mode. It is the
composite of the mode requested via MQTT Topic and the Override switch input if it is used. The
second are the expected number of minutes until each relay will turn ON based upon the current
fallback parameters. 9999 is used for the case of the irrigation mode being disabled.

At the same rate a sensor message will be published such as:

IrrigationTest/SENSOR={"Time":"2018-05-31T11:05:22", "Switch1":"ON"}

The IrrigationOffMinutes, IrrigationOnMinutes, IrrigationNextMinutes and IrrigationStartHour

commands can be used with or without suffix. If no suffix is provided then it applies to all relays in the

module. If a suffix of “2”, for example, is provided then it applies only to the 2nd relay. It is possible to

send a programming schedule where all relays are given the same value, then a subsequent command

given to change a specific relay’s value.

The LED operation is controlled by the Tasmota LedMode parameter. On the Sonoff 4CH it is the blue

“WiFi” labeled on. On the Sonoff Basic it is the red one. Normally it will be ON when any relay is ON.

This is LedState=1. For irrigation control this LED has been implemented as being the ON when

irrigation mode is AUTO or ON. The LedState configuration needs to be set to 0 via the Browser Console

page (LedState 0) or MQTT message such as shown in Figure 264. For units such as the Sonoff Basic it

likely will be desirable to leave LedState=1 so the one LED will be used to reflect the state of the relay

and not the state of the irrigation mode.

Figure 265 shows the addition of a rocker switch on the Sonoff 4CH Pro cover and wired to the header

with SDA (GPIO2) and GND labels. This switch corresponds to the Figure 266 GPIO2 setting. When the

switch is in the closed position the irrigation logic is overridden. When the switch contact goes open or

no Figure 266 user input setting specified then the irrigation mode will be fully controlled by MQTT.

Page 481

Figure 265 Switch Install for Enable Override

Page 482

Figure 266 Sonoff 4CH Pro Module Setup

Page 483

Figure 267 Sonoff 4CH Pro MQTT Setup

Page 484

Figure 268Sonoff 4Ch Pro Telemetry / Logging Setup

Page 485

Figure 269 Sonoff 4Ch Pro Other Setup

Page 486

20.8 Doppler Radar Motion Sensor

20.8.1 Warehouse Motion Light Switch
Passive Infra Red (PIR) sensors are commonly used to detect motion. They work in many situations and

do poorly in others. Specific issues are they are directional so mounting orientation is important. They

are also sensitive to sunlight/shadows, flying bugs, wind blowing.

A different technology using microwave frequencies are also very effective for objects that reflect

microwaves. Water is reflected and people are made up largely of water. They are omni-directional so

motion from any direction will be detected. This provides greater freedom in mounting the sensor,

especially when trying to detect motion anywhere in a given area.

These devices can be purchased for around $1. I elected to use one that is nicely packaged and has

adjustments for range. It also has notification pulse duration and Lux sensitivity for night-only use. For

these additional settings I selected minimum 10 second pulse, and no light limitations. The link, picture

and datasheet are captured below.

https://www.aliexpress.com/snapshot/0.html?spm=a2g0s.9042647.6.2.7d614c4dMCAYVu&orderId=94

819030526584&productId=32794241378

https://www.aliexpress.com/snapshot/0.html?spm=a2g0s.9042647.6.2.7d614c4dMCAYVu&orderId=94819030526584&productId=32794241378
https://www.aliexpress.com/snapshot/0.html?spm=a2g0s.9042647.6.2.7d614c4dMCAYVu&orderId=94819030526584&productId=32794241378

Page 487

Figure 270 Microwave Radar Sensor Data Sheet (1/2)

Page 488

Figure 271 Microwave Radar Sensor Data Sheet (2/2)

Page 489

For me what was inconvenient was the 12VDC to 24VDC voltage range. The technology is low power so

battery use may be possible, but this unit is rated at 500mw so will not work for very long using

batteries.

The interface is a switch that closes for the selected pulse duration. This means anything that can sense

a switch closure can be used to provide the interface to the HA system. Something like a door-window

sensor would work well. Since I needed to provide non-battery power anyway, I elected to use a

microcontroller and WiFi with the Sonoff Basic being the item that hangs out in my junk box. My

hookup is shown in Figure 272.

Page 490

Figure 272 Sonoff Interface to Radar Motion Sensor

Page 491

To apply the Sonoff Basic to this application there are some circuit board cuts and jumpers needed. The

stock unit is expecting 120/240VAC power and the radar needs 12VDC so needed to bypass the Sonoff

power supply and run 12VDC directly into the 3.3VDC voltage regulator in the Sonoff. The Sonoff IO is

designed as an output but this use has it as an input. While wire can be run directly from the Sonoff

circuit board, I elected to use the screw terminals that are normally used for the output.

The output connector is shown on the left in Figure 273. Just to the lower right of the connector the top

trace was cut with a utility knife. This same connector pin needed further cut on the back side as shown

with the red ellipse in Figure 274.

Figure 273 Sonoff Basic Circuit Board Top

Page 492

Figure 274 Sonoff Basic Circuit Board Back

The other side of the output connector is already wired to the Neutral side of the input connector. This

will be used to form the ground connection when the Radar Sensor switch closes.

I did not recall is the GPIO 14 had a pull-up resistor or not so I added one. A row of 5 pins is available in

the center of the circuit board where the resistor was added as shown with a red rectangle. The bottom

one is 3.3V and the top one is GPIO14. Next to the top is Ground. A wire was soldered from Ground to

the Neutral input/output connections as shown with the red arrow.

To bypass the Sonoff power supply the trace on Line input connector and on the input pin of the voltage

regulator was cut with a utility knife. These are shown with a yellow arrow. A wire was soldered on

each side of the cut connections to provide 12VDC input pin connection to the voltage regulator input.

This wire is shown as orange arrow.

With the above alterations the input connector Line is 12VDC and Neutral is ground. The output

connector Line is the switch input for GPIO14 and Neutral is ground.

Any version of Tasmota firmware can be loaded and configured to be a Switch input as shown in Figure

275. WiFi and MQTT parameters also need to be set as shown in Figure 276 and Figure 277. Once

configured the Tasmota switch mode should be set to 2. This will result in the switch status to be the

Page 493

same as radar sensor output. If this is not done then each motion detection pulse will toggle the switch

status. This is most easily done from the Sonoff Tasmota Console browser page with command “Switch

Mode 2”.

Figure 275 Radar Sensor Module Configuration

Page 494

Figure 276 Radar Sensor WiFi Parameters

Page 495

Figure 277 Radar Sensor MQTT Parameters

20.8.2 RCWL-0516 (Automotive Proximity)
The RCWL-0516 is a similar microwave motion detection circuit card. It accepts 4VDC to 28VDC input

and produces a 3.3VDC output. No sensitivity adjustments available other than changing components.

Schematic is shown in Figure 278. Placement of the sensor is specified as minimum of 1 centimeter

from metal objects and this likely includes the circuit traces etc of the Sonoff.

Page 496

Figure 278 RCWL Schematic

The Sonoff Basic interface is done by tapping off of the 5VDC regulator input on the Sonoff and using

GPIO14 as the input for the RCWL-0516 output. A 1K resistor was placed in series with GPIO14 input. As

near as possible to the RCWL-0516 a 3300-microfarad capacitor was placed between the power input

and ground to stabilize the voltage to the sensor. The wiring is shown in Figure 279.

Page 497

Figure 279 RCWL-0516 Interface Wiring

The Tasmota setup is the same as with the other radar sensor with one exception. The sensor output is

high when motion occurs so the switchmode should be set to 1 in the Tasmota console page. This will

result in the MQTT status to be the same as the sensor status.

5VDC on

regulator

input to red

wire

GPIO14 with

10K resistor

to yellow

wire

Ground to

green

wire

3300 uF capacitor

between power and

ground

Page 498

20.8.3 HLK-LD2410C Human Presence

The HLK-LD2410C is a small module designed for microcontroller integration for purpose of human

presence detection. It contains a Bluetooth interface that is paired with a smartphone App (search for

HLK Radar in Google or Apply stores) and contains a serial and discrete interface for automation

integration. It is well documented in the manufacture’s documents at HLK-LD2410C - Google Drive that

includes both interface and installation guidance.

It can be obtained at reasonable price locally via Amazon

https://www.amazon.com/dp/B0C8H7ZBRS and even cheaper via AliExpress. This is a directional

device with a 60-degree field of view and detection range up to 5 meters. It can be tweaked via

Bluetooth (or serial) to constrain the detection range to a more limited distance.

It is possible to interface this device with a TTL-level UART or with a microcontroller such as ESP8266 or

ESP32. In the UART case, the mcsMQTT Local Page, Serial Tab is used to specify the COM port, baud

rate, End Of Line byte and LD2410C serial decoding. A hex F8 (248) is a repeating character in the serial

header so made for a convenient way to break up the continuous serial stream from the sensor.

Using the serial interface does not include the discrete output for binary present/not-present, but the

serial data can be used with more resolution to include stationary vs. moving as well. If the UART does

not support 256000 baud, then it can be changed on the Bluetooth App to a compatible baud rate.

Later evaluation of the data shows that the discrete is an important output that cannot be easily derived

from the other data so it makes the use of the serial port UART a more limited choice.

https://drive.google.com/drive/folders/1ypOlacBmmFXY6lDQ0f1hEJFmczNe-0WG
https://www.amazon.com/dp/B0C8H7ZBRS

Page 499

Figure 280 LD2410C Interface via UART

It is also possible to interface this module via Bluetooth in a manner similar to what is done with the HLK

Radar App. The documentation indicates that the Bluetooth protocol is the same as the serial protocol.

I did query the advertisement with the following returned to have three services

The first of my units advertised on HLK-LD2410_EF43 with the following parameters

...Service Count 3 for BluetoothLE#BluetoothLE00:e0:45:da:ed:03-62:8d:ee:1f:ef:43

....Characteristics Count 1 for service 1 00001800-0000-1000-8000-00805f9b34fb

...ReadCharacteristic 1 for Service 1 characteristic 00002a00-0000-1000-8000-00805f9b34fb:48-

4C-4B-2D-4C-44-32-34-31-30-5F-45-46-34-33 HLK-LD2410_EF43

...WriteableCharacteristic 1 for Service 1 characteristic 00002a00-0000-1000-8000-

00805f9b34fb

...Characteristics Count 2 for service 2 0000fff0-0000-1000-8000-00805f9b34fb

...Characteristics Count 2 for service 3 0000ae00-0000-1000-8000-00805f9b34fb

The manufacturer manual documented two UUID shown below si it appears the second service is the

primary one. I did not pursue the Bluetooth interface any further.

For the performance evaluation it was evaluated by coupling the device with an ESP8266 using both the

serial and the discrete outputs. A D1 Mini was used for this. The prototype is shown in Figure 281 with

the wiring connections shown in table below. Use of D1 Mini D2, D5 and D6 are not critical so if not

available on other microcontroller than others available can be used. Just need to align the Tasmota

module setup with the pins being used.

HLK-LD2410C Pin D1 Mini Pin

TX D6

Page 500

RX D5

Out D2

Gnd Gnd

Vcc 5V

Figure 281 LD2410C Evaluation Prototype

Stock Tasmota firmware was installed using the Tasmota Web Installer, with the Tasmota (English)

firmware version selected, in the ESP8266. An ESP32 could also be used, but the additional horsepower

is not needed.

The Tasmota configuration is shown in Figure 282. The Serial connection used the D6 and D5 pins of the

ESP8266 with the RX and TX swapped when connecting to the radar module. The radar module discrete

(center pin) output was connected to D2. A virtual relay was configured on D1. This was done to simply

the MQTT output all being available in the x/RESULT topic.

The Tasmota Other Tab was used to give it friendly names of LD2410C and the MQTT Tab was used to

assign the Topic and MQTT Broker address. In my case I prefer the Full Topic starting with the topic

Page 501

name rather a prefix so I removed the prefix in this setting. I also used LD2410C as the Topic as this is

the Topic that mcsMQTT recognizes to perform the serial decoding. If multiple LD2410C are being used

then the Topic should include additional identification such as LD2410C/Kitchen so each can be uniquely

identified.

From the Tasmota browser Page, Console Tab, the following was entered to have the serial data

reported as hex and to match the 256000 baud of the radar module

sbaudrate 255900
serialdelimiter 254

Page 502

Page 503

Figure 282 LD2410C Tasmota Module Setup

Page 504

The data shown on the MQTT Page, Association Tab (filtered for LD2410C/RESULT Topic) is shown in

Figure 283. The “a” column checkbox was used to create the HS Device Features and the “s” column

checkbox was used to collect data for charting analysis.

Figure 283 LD2410C Reported RESULT Data

Page 505

The data made available from the unit are three different distance measurements, the discrete state,

and a motion state consisting of of one the four states

"None",

"Motion",

"Stationary",

"Motion+Stationary"

These four states are mapped in the VSP entries in the created HS Feature. They also show up in the

Bluetooth HLK Radar App in its status summary display.

For the three-minute test captured in Figure 284, it can be seen at 5:50 PM the distance reports that

one was walking into the room where the sensor was located. Overall, it was a good correlation

between distance and actual distance.

About 40 seconds later the discrete output goes high and remains high for about two minutes. At 5:43

motion out of the field of view (but still in the room) was detected. As walking out of the room, and the

field of view was reentered, the distance showed the change until after 5:43 when the room was exited.

Figure 284 LD2410C Data Analysis

Page 506

The corresponding HS Device and Features are shown in Figure 285. In this snapshot it showed a

stationary person in the field of view and three different distance measurements. A better

understanding of each distance measurement is needed to support potential automation trigger logic.

Note also that the POWER discrete is OFF when presence is detected. The more natural state would be

ON. This can be changed in the Tasmota configuration using the configuration command on the console

to invert the logc as:

“switchmode 2”

Another approach in on the mcsMQTT Edit page for POWER and define the VSP to be something like

“ON=0,Unoccupied,Occupied”

“OFF=1,Occupied,Unoccupied”

Figure 285 LD2410C HS Device and Features

Overall, this module is easy to setup and appears to provide reasonable and responsive results for

presence detection. It is directional so its setup has the same considerations of a camera setup to

assure the field of view in the area of interest.

While not tested much, it appears that the beam does penetrate door and walls using the default

factory configuration, but obviously only in the forward-facing direction. This has the advantage of a

more controlled location response vs. the omni-directional sensors.

Contrast this with the other radar sensors evaluated, where the field of view was 360 degrees and

penetration through wall occurred. In the latter case they worked very well for a ceiling mounted

sensor that was setup to turn lights on when an area of the home was being approached. The lights

would actually turn on as one was opening the door rather than a second after the doorway was

entered.

For this sensor it looks to have a delay of up to a second from when motion was first detected, and the

discrete output toggled. If one needs faster response, then the distance measurements are available.

Page 507

I did not see any obvious way to assess being within a “zone”. I think anywhere along the detection arc

will report the same distance so right vs. left of the beam center is unknown. This is a variance from the

Aqura FP1/FP2 sensors that advertise zone reporting. I have never actually tried zone detection with

the Aqura.

Page 508

20.8.4 DF Robot SEN0395 mm Wave Radar Detection Sensor

The SEN0395 is available from Amazon Amazon.com: DFROBOT mmWave Radar - Human Presence

Detection Sensor (9 Meters) : Electronics . It is a high-quality construction at a higher price-point of $34.

It uses a longer range (9 meter) and narrower field of view (100x40 degrees) so represents the most

precise of the units evaluated from an installation perspective.

The SEN0395 is another sensor that has both serial and discrete interface capability. At this time the

serial interface contains the same binary information available from the discrete interface. There are

provisions in the serial protocol for additional information so in the future it may provide data such as is

available from the LD2410C.

It has the ability in the serial protocol to identify four distance-based zones. It is not clear how these get

reported as there is only a single binary output. Contrast this with the LD2410C that reports distance on

a continuous scale.

The prototype was constructed using DuPont wires between the sensor and the UART. The 5V power

was selected from the UART and the signal lines selected to be 3.3V for TX and RX. Ground was the

fourth wire. It can be seen in Figure 286.

Initial evaluation was using Termite to access the serial port UART. This confirmed a message stream

that looks like the following repeated every second. When out of range the “1” changes to “0”. This

means the only info of interest is the number.

$JYBSS,1, , , *.

The serial protocol is documented at mmWave Radar Sensor Arduino-Human Presence Detection Wiki -

DFRobot . I tried using it to stop the sensor and to configure the detection area. It was done using

copy/paste from the document to Termite input window. The commands had no effect. There was not

a response of “Done” or “Error” as described in the manual. I did not pursue the control via serial any

further.

https://www.amazon.com/DFROBOT-mmWave-Radar-Presence-Detection/dp/B0BYMYMXLP
https://www.amazon.com/DFROBOT-mmWave-Radar-Presence-Detection/dp/B0BYMYMXLP
https://wiki.dfrobot.com/mmWave_Radar_Human_Presence_Detection_SKU_SEN0395
https://wiki.dfrobot.com/mmWave_Radar_Human_Presence_Detection_SKU_SEN0395

Page 509

Figure 286 SEN0395 Prototype Wiring

Next step was to interface to mcsMQTT and HS. The UART continued to be used, but the port now

being setup to be used by mcsMQTT. mcsMQTT Local Page, Serial Tab was setup using the default

115200 baud and LF character as shown in Figure 287.

Figure 287 SEN0395 Interface Setup

Data was being received and mapped into the HS Feature as DeviceString. This was edited to

extract the number from the $JYBSS,1, , , *. Text using regular expression and then to setup

VSP to report Occupied vs. Unoccupied for the 0/1 values. Figure 288 show the use of the Edit

Tab to accomplish this. Figure 289 shows the view from HS with COM10 providing data with

DeviceValue of 0 and Status of Unoccupied.

Page 510

Figure 288 SEN0395 MQTT Edit Tab Setup

Figure 289 SEN0395 HS Serial Feature

Page 511

The only data available was the binary status and this was a reliable measure of occupancy. The wiki

documentation indicated that the default detection and departure times are 2.5 and 10 seconds around

the beam detection. This provides for a stable occupancy status, but lacks usefulness if trying to also

use it for low-latency detection.

Page 512

20.9 InfraRed Motion Direction Sensor

An infra-red LED emitter and receiver pair form an invisible beam where blockage of the beam can be

detected in a matter of milliseconds. When multiple receivers are placed side-by-side the beam breaks

will occur in sequence based upon the direction of motion.

Standard 5mm LEDs typically have a current capacity of 20 ma. These will produce a sufficiently bright

beam to be detected up to about a foot. Larger distances can be detected with increased current, but

this requires the emitter to be pulsed to avoid destroying the LED or LED rated at higher current or

efficiency. Long distances, such as used with entertainment equipment and garage door safety beams

will typically modulate the IR emitter at a high frequency and demodulate at the receiver and may use

lenses for focus the beam.

In this implementation a steady current will be applied to the emitter and three side-by-side receivers

will be used for motion direction detection. This can be used for pet doors or similar small passages of

under 12 inches.

The simplest circuit is a resistor and LED for the emitter and each receiver. The emitter resistor serves

as current limit to protect the current handling capacity of the LEDs when conducting. The receiver

resistor also protects the LED, but also serves as a pullup resistor on the GPIO inputs to assure a high

logic level when the receive LEDs are not conducting (emitter beam is not present). Value is not critical

with the tradeoff being switching speed vs. current draw. The circuit is shown in Figure 290.

LEDs are polarity sensitive. The LED cathode goes to most negative side. It is identified as having the

shorter lead and shaved/flat side of the LED.

The circuit shows a 180-ohm resistor for the emitter. Depending upon the LED this value will likely be in

the 150 to 220 range to give adequate emitter intensity. Consider a 1.2 V drop across the LED then a

180-ohm resistor will yield a current of 3.8/180 = 21 ma. LED emitters for this application are more

desirable if their field of view is small so the energy will achieve the most directional/longest beam. The

LEDs I used were obtained from Amazon Cylewet 30Pcs 5mm 940nm LEDs Infrared Emitter and IR

Receiver Diode for Arduino (Pack of 30) CYT1057 and contained no data sheets. This one looked to give

a good field of view for a 12” receiver distance which each receiver having minimal separation between

the next.

Experimentation showed that the ESP8266 would not boot into the Tasmota application if one (or more)

of the three GPIO inputs were at ground potential when power applied. Since the state of the

emitter/receiver is not known, in the general case, at time of power application it is possible that the

input will be held low and startup will not complete.

To solve the problem the Sonoff relay is used to switch the IR LED ground connection. At application of

power the GPIO12 controlling the relay will always be quiescent so the relay will be open. There will be

no ground to complete the receiver IR LED so the three GPIO inputs will all be pulled up to allow the

boot to complete. During Tasmota initialization the relay will be set based upon the PowerOnState

value (0=relay open/off, 1=relay closed/on, 3=relay at Sonoff power-down state). This parameter will

normally be set based upon how the motion direction detector fits into the automation application.

https://www.amazon.com/gp/product/B06VY25N8J/ref=oh_aui_detailpage_o01_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B06VY25N8J/ref=oh_aui_detailpage_o01_s00?ie=UTF8&psc=1

Page 513

A mod was needed to isolate the relay. See red circle of Figure 248 in the garage door section for board

cut that is needed. Rather than using the relay as dry-contact control as was done for garage door, it is

being used here to provide switched ground. This means the two relay output pads are wired to ground

and switched ground. The switch ground is connected to the cathode (negative) side of the three IR

receiver LEDs. It is also brought out to one of the pins of the output screw terminal block. The other pin

of the block is connected 5 VDC input of the Sonoff regulator to allow the Sonoff provide controlled

power to the emitter LED. (See Figure 255 for 5 VDC location on Sonoff). This allows the emitter to be

run from the Sonoff rather than needing an independent wall-wart.

GPIO1, GPIO3 and GPIO14 are available in the center of the Sonoff circuit card. See Figure 291. Header

pins are added for flashing and used again to connect the receive IRs. Dupont wires are used to connect

the header pin to the resistors for each receive LED. GPIO1 and GPIO3 are used for the serial connection

for flashing and debugging. For this application they will be used as discrete inputs so Tasmota needs to

be informed that serial communication will no longer be enabled. This is done from browser Console

page with “SerialLogging Off”. If flashing is done via serial, then flashing should precede this step.

Page 514

Page 515

Figure 290 IR Emitter and Receiver Circuit

The Sonoff case (Figure 293) was used to mount the three IR receiver LEDs. Initially they were spaced

across the case. Experimentation showed that the single emitter did not have sufficient field of view to

span this distance. Putting all three close yielded good results.

The pull-up resistors were solder on the Sonoff circuit card, but could just as easily been soldered on the

LED mount in the case. Take care to not run the resistors or connecting wires over the antenna trace on

the Sonoff to minimize disturbing the WiFi.

For the emitter a 5V wall-wart that has a barrel connector was initially used. A mate to this connector

with screw terminals was used to mount the LED. The 180-ohm resistor was soldered in series with the

longer lead anode of the LED. See Figure 294. The alternate emitter source voltage is available from the

Sonoff for a more self-contained unit. For this case the 5VDC and switched ground were wired to the

output screw terminals of the Sonoff.

Page 516

This emitter (20 ma) provided a beam distance of about one foot. A higher-powered emitter such as the

IR333-A which is available through Digi-key or overseas has a 100-ma capacity. For this implementation

I used a 56-ohm resistor to mate with the measured 5.4V of the wall-wart. Distance in this case

increased to about three feet and beam pointing became very sensitive to correctly align the emitter

and receiver. To further extend the distance and reduce somewhat the sensitivity to beam alignment

the implementation shown in Figure 295 was used. Three 100 ma emitters were mounted in parallel.

This increased the distance to four feet. Going beyond this the beams because too unstable and would

produce false motion reports. Of note is the orientation of the three LEDs made little difference to the

range, but found a perpendicular alignment between emitter and receiver seems to make alignment

easier.

Pictures of the install are shown in Figure 292 through Figure 295. Note that the IR emitter shown in

Figure 294 and Figure 295 is not visible to human eye but is visible to camera.

Figure 291 Sonoff GPIO Pin / Header location

Figure 292 GPIO Input Pull-up for three Receivers

Page 517

Figure 293 Three IR Receivers Mounted in Sonoff Case

Page 518

Figure 294 IR LED Emitter

Figure 295 High Power Triplex Emitter

Page 519

mcsTasmota was updated to 5.9.13h to include three additional input options of MotionL, MotionM,

MotionR for Left, Mid and Right position of the receiver LEDs. When Motion types are selected then the

inputs are assumed to be normally low until a beam break occurs and then the input becomes high. The

Tasmota option SwitchMode has been repurposed when Motion is a selected input. The default 0 will

cause “Moving Left” or “Moving Right” to be reported as motion across beams are detected. When set

to 1 then there will also be a “No Motion” report after all beams have no blockage. This could be useful

when a positive indication is needed that the event is over. When SwitchMode is set to 2 then the

additional “Confimed” is appended to the Left or Right messages. It is produced when the middle beam

has been broken after one of the other two. In this case a normal report will be “Moving Right”, Moving

Right Confirmed” and “No Motion”.

The /STATE topic has also been augmented for motion with an additional “Moving” key. It will take on

values between -2 and 3 to reflect the internal state of the motion logic per the following:

-2 Moving Left Confirmed (MotionL ON and then MotionM ON)

-1 Moving Left (MotionL ON)

0 Not Moving (MotionL OFF, MotionR OFF, MotionM OFF)

1 Moving Right (MotionR ON)

2 Moving Right Confirmed (MotionR ON and then MotionM ON)

3 No motion report (MotionR ON, MotionL ON, MotionM ON)

State 3 reflects a fast motion case that can occur because polling [0.05 second SwitchHandler

procedure] rather than interrupt driven [CounterUpdate procedure] implementation was used for beam

break detection. If real-world application shows polling to be inadequate then the interrupt approach

can be done.

The transition from State 3 to state -2 or 2 will reflect the exiting rather than entering state for motion

direction. For example, if MotionR beam is the first to be turned OFF then the state transition will be to

-2 and the report will be Moving Left Confirmed (or Moving Left if switchmode is not 2)

A debug level log is provided to assess the beam break and resultant state transition such as shown

below. The line containing “Beam” starts with the number of interrupts that have been received from

beam break state changes since the last time the actions were performed. The beam values are: 0=no

beam break, 1= right beam broken, 2= left beam broken, 3= both beams broken. The state values are

the same as described above, but biased by 3. This means 1= moving left confirmed, 2 = moving left, 3=

no motion, 4 = moving right, 5 = moving right confirmed. Action is taken in the confirmed states.

15:43:22 MQT: GarageLight/RESULT = {"POWER":"ON"}

15:43:22 MQT: GarageLight/POWER = ON

15:43:22 MQT: GarageLight/Moving = Moving Left

15:43:22 47 Beam 00000111111111111111111131311113333333333333333 State

33333222222222222222222211111111111111111111111

15:43:22 CFG: Saved to flash at F8, Count 29, Bytes 3584

15:43:23 MQT: GarageLight/Moving = Not Moving

15:43:23 20 Beam 33333322222222220000 State 11111111111111113333

Page 520

15:43:27 MQT: GarageLight/RESULT = {"POWER":"OFF"}

15:43:27 MQT: GarageLight/POWER = OFF

15:43:27 MQT: GarageLight/Moving = Moving Right

15:43:27 71 Beam

00000000000000000000202000022202202222222202022222222222222222333333333 State

33333333333333333333434333344434434444444434344444444444444444555555555

15:43:27 MQT: GarageLight/Moving = Not Moving

15:43:27 9 Beam 222002000 State 555334333

mcsTasmota 5.9.13h does not support multiple DS18B20 sensors to keep the image size below 500K.

This allows a one-step OTA flash. mcsTasmota 5.9.13.g supports multiple 1-wire sensors.

It is also possible to configure only MotionL and MotionR. In this case the Confirmed states can only be

entered for exit rather than enter beam path case.

The setup of mcsTasmota is the same as with other applications described in this document with the

exception of the Module configuration as shown in Figure 296.

Page 521

Figure 296 Module Setup for Motion Direction

20.9.1 Motion Direction Version 2
Use of IR emitter for up to about 2 feet yielded a good result. When trying to span 30 inches the

operation was not reliable. Just not enough IR light reaches the receivers even with the higher power

ones and use of 3 LEDs. This technique for the typical doorway or hallway will need modulation and

demodulation of the IR beam. That adds complexity to the electronics so unless prepackaged it is

beyond the simple hack.

The easy way to achieve longer distances is with use of coherent light (laser) for the emitter and a

photo-resistor (Light Dependent Resistor - LDR) becomes an easy replacement for the IR LED receiver.

The laser is readily available in red light which has the advantage of making it much easier to align the

light beam over the LDR. The beam now is visible so that has advantages and disadvantages

operationally. One sees the laser beam across their body as they pass through the doorway.

Page 522

The laser is a little more expensive than the IR LED emitter at $6 from Amazon

https://www.amazon.com/gp/product/B0764LS98H/ref=od_aui_detailpages00?ie=UTF8&psc=1

The LDR selected in one with 10K to 50 ohm range also from Amazon for $6 for more that I will ever use

https://www.amazon.com/gp/product/B00H4ZSGXC/ref=od_aui_detailpages00?ie=UTF8&psc=1

Both these parts are direct replacements for the IR LEDs in the circuit so the electrical redesign and

construction was trivial. Unsolder old parts and solder the new ones. One change that was made is use

of 4.7K rather than 10K resistors for the LDR pull-up resistors. False beam breaks were being seen with

the less aggressive resistors.

The mechanical change was a little more difficult because more care was needed on the emitter side to

allow fine adjustment of the laser beam. I mounted two laser diodes in a short 2x2 and threaded short

screws in two axis of each. Little pieces of shim were used to bias the laser so it was in range of the

screw adjustments. Over the 30” span the width of the laser beam came pretty close to the 0.2” width

of the LDR. Power for the two lasers was a 5V wall-wart. This mounting is shown in Figure 297.

Figure 297 Laser mounting with adjustment screws

The receiver side of the circuit remained inside of the Sonoff and a cover printed that exposed the LDR,

provided a window for the Sonoff LED and button, and a couple mounting holes for a screw into the wall

where the doorway was installed. This is shown in Figure 298

https://www.amazon.com/gp/product/B0764LS98H/ref=od_aui_detailpages00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B00H4ZSGXC/ref=od_aui_detailpages00?ie=UTF8&psc=1

Page 523

Figure 298 Laser beam break doorway mounting

Wiring between the previously installed light switch and Sonoff was fished through the wall. This

consisted of Power, Common, Light, Switch post 1 and Switch post 2.

The Tasmota configuration is shown in Figure 296. The two LDR are on GPIO1 and GPIO3. Most users

will not use GPIO4 because it requires solder directly to the ESP8266. The mechanical switch provides a

ground connection to GPIO14. Console operation is done to set PulseTime to 1900. This means that

when motion is evaluated to be Right (Into Garage) the light will turn on for 1800 seconds (30 minutes).

When motion is evaluated to be Left (Into House) there will be a three second delay and the light will

turn off. This three second delay is to provide time for the inside light to be turned on while the garage

door is still open and light being provided by the garage light. If Switch1 (GPIO14) is in the ON/Ground

position then the light will remain ON until the switch is turned OFF. This means that automated control

only occurs when the wall switch is OFF. Since logic 0 is ON the console is used to set SwitchMode to 2.

PoweronState is set to 3 to persist the light state through power cycle.

A change was needed in the mcsTasmota firmware 5.9.13i to handle the situation where one enters the

garage and forgets to close the door and then steps back into the house to grab and shut the door. This

activity appears to the firmware as motion into the house so turns OFF the light. The 5.9.13j change

augments the state logic to handle motion starting when both beams are blocked with the end result

being that the final motion back into the garage will return the light to the ON state. Firmware installed

Page 524

is mcsTasmota 5.19.13j initially and then 5.9.13k which simplifies the motion state machine to only

allow transitions which reset upon both beams no longer broken. Change of direction between beams

was problematic. It was later updated to 6.4.1.11 to capture the Arduino core 2.5.0 and then later to

mcsTasmota641MotionDirection.bin to streamline the interrupt service processing to avert fatal

exceptions.

Page 525

20.10 Mouse Trap Notification

There are many ways to sense if a mouse is in a mouse trap. To evaluate the effectiveness a mouse trap

was obtained from Amazon.com. They come two per order so two traps were configured with mouse

presence detection. This approach demonstrates two different detection mechanisms while using a

Sonoff Basic to provide a report via WiFi.

The completed project is shown in Figure 299 with annotations for the mounting of the sensing

components. The wire connections inside the Sonoff are similar to those shown in Section 20.9.

Connection points are 5 VDC for IR emitter, GPIO14 for 10K pull-up and IR receiver anode, GPIO3 for 10K

pull-up and reed switch. The main voltage was isolated from the relay contacts as was done in garage

door application shown in Figure 248, but the bridge wire was not added to connect the relay to the

output pins. One side of the relay was connected to the ground circuit pad next to GPIO14. The other

side of the relay was connected to the return side of the two IR LEDs and reed switch.

The physical modifications included use of small file under each of the traps to remove a little material

to allow the wires to pass from the Sonoff; removal of material from the center base of the Sonoff to

make room for the wires that are routed through the base; two holes drilled in one of the traps to

mount the two IR LEDs. Hot glue was used to attach the Sonoff base to one of the mouse traps, secure

IR emitter, attach magnet on trap door and to secure the bottom of the two traps to a piece of

hardboard to allow both to be moved as a single duplex unit.

Page 526

Figure 299 Wifi Equipped Duplex Mouse Trap

Two discrete inputs of the Sonoff are used to detect presence in each of two mouse traps. One case is

an IR beam break and the other case is a reed switch and magnet. The circuit shown in Figure 300 is

very similar to the Motion Direction circuit described in Section 20.9. I

Magnet on

trap door

Reed switch

under case

Emitter IR

LED

Receiver IR

LED

Page 527

Figure 300 Mouse Presence Detection Circuit

The Tasmota setup, using 5.9.13h of mcsTasmota was done much like the setup for motion direction

application described in Section 20.9. This was chosen so that a single topic can be used to report

presence of mouse in either trap. The left trap will report “Moving Left”; the right trap will report

“Moving Right” depending upon which trap the first mouse enters. The module setup is shown in Figure

301.

From the browser console the following settings were used:

“PowerOnState 1” to enable the sensors after boot,

“SerialLog 0” to allow use of GPIO3 as discrete input.

“SwitchMode1 0” and “SwitchMode2 0” so only event reported when mouse detected.

Page 528

Figure 301 Mouse Detection Module Setup

20.10.1 Mouse Hotel Version 2

Lessons from the original design based upon in-service use is that mounting of the electronics on the

mouse traps is a bad idea because following capture of a mouse the trap needs to be removed from

service, the mouse released and then the trap washed to remove the trace of mouse odor. There is also

no practical reason that separate sensors are needed to identify which trap has the mouse. All that is

needed is that notification is that at least one trap has a mouse in residence.

The semi-clear plastic of the trap allows transmission of IR. This means that a single emitter/receiver

pair can be used and no hole is needed in the trap to allow the beam to penetrate. The mounting of the

Page 529

emitter/receiver can be in a cradle outside the traps. Wiring needed for these consists of emitter

power, receiver GPIO input, and a common ground. A cheap audio earplug uses a 1/8 “ 3-conductor

connector so makes a easy choice as the wiring between the trap cradle and the Sonoff. The earplugs

are cut off and wire soldered to the Sonoff at the same points where the prior wiring was routed. The

1/8” female connector mounted on the cradle to make wiring separation easy in the future, but this was

not essential. Figure 302 shows the cradle and the wiring. The two traps are loose within the cradle so

are easy to remove to service the mouse.

The Tasmota configuration has only MotionR or MotionL, but not both. The IR sensor is connected to

GPIO14 now that only one input is needed. PowerOnState still set to 1 so relay is engaged to power the

IR emitter. SwitchMode 0 so only Left motion reported, hence providing a latch function or to 1 to have

both moving and not moving events reported.

Figure 302 Mouse Hotel Revision 2

Page 530

20.11 Notification Frame
A common problem is some form of dashboard that is a central place where events that need attention

can be displayed. It is possible to rely on smartphone notifications if one is tethered to their phone. It is

also possible to use a tablet or similar display with HSTouch, Imperihome other UI and then construct a

dashboard.

The approach described here is to repurpose an old digital picture frame and use NeoPixels (Individual

RGB LED Strip) for the notification. The mechanical parts of the frame were retained and the electrical

parts replaced by a Wemos D1-Mini running Tasmota. The IR sensor, buttons, power connector was

retained. A DS18B20 sensor and the ambient light (LDR) sensor were added. Figure 303 provides the

visual of the project.

Figure 303 Notification Frame

Two strips of 8 LEDs were glued to right and left edge of the picture frame. The original picture frame

screen was removed and replaced with black hardboard onto which a glue stick was used to attach the

printed labels for each LED. This label can be easily updated by printing and attaching a new sheet.

The organization of the frame is with eight LEDs on the left for events that need immediate attention.

They will take on Green for OK, Red for Failure, Yellow for update not received. The right column is for

Page 531

activities that eventually need attention. They use the same color scheme as the left column except the

OK state is blue rather than green.

Two buttons on the side of the frame are connected to the Wemos ESP8266. One will reset one column

of LEDs to the OK state. The other will do the other column of LEDs. IR can also be used to reset

individual LEDs. Tasmota Rules are used to map an IR button and frame button to a LED(s).

rule1

on IrReceived#Data=FF9867 do LED16 001000 endon Red

on IrReceived#Data=FFD827 do LED15 001000 endon Green

on IrReceived#Data=FF8877 do LED14 001000 endon Dk blue

on IrReceived#Data=FFA857 do LED13 001000 endon W

on IrReceived#Data=FFE817 do LED12 001000 endon Dk orange

on IrReceived#Data=FF48B7 do LED11 001000 endon Lt green

on IrReceived#Data=FF6897 do LED10 001000 endon Blue

on IrReceived#Data=FFB24D do LED9 001000 endon Flash

on IrReceived#Data=FF02FD do LED8 000010 endon Orange

on IrReceived#Data=FF32CD do LED7 000010 endon Lt blue

on IrReceived#Data=FF20DF do LED6 000010 endon Dk purple

on IrReceived#Data=FFD0FF do LED5 000010 endon Strobe

on IrReceived#Data=FF38C7 do LED4 000010 endon Peach

on IrReceived#Data=FF28D7 do LED3 000010 endon aqua

on IrReceived#Data=FFF00F do LED2 000010 endon Purple

on IrReceived#Data=FF30CF do LED1 000010 endon fade

Other IR Remote buttons not used

FF906F Up

FFB847 Down

FFF807 Off

FFB04F On

FF38C7 Yellow

FF28D7 Dk teal

FFF00F Pink

FF30CF smooth

The frame button part of the rule is:

on button1#state do backlog LED16 001000; LED15 001000; LED14 001000; LED13 001000; LED12

001000; LED11 001000; LED10 001000; LED9 001000 endon

on button2#state do backlog LED8 000010; LED7 000010; LED6 000010; LED5 000010; LED4 000010;

LED3 000010; LED2 000010; LED1 000010 endon

Page 532

A rule needs to be on a single line, but no more than 512 characters. This means the rule needed to be

split up into three due to the character limit. In format used by Tasmota Console or MQTT Topic are the

line to enable the rule and the one line rule:

rule1 on IrReceived#Data=FF9867 do LED16 001000 endon on IrReceived#Data=FFD827 do LED15

001000 endon on IrReceived#Data=FF8877 do LED14 001000 endon on IrReceived#Data=FFA857 do

LED13 001000 endon on IrReceived#Data=FFE817 do LED12 001000 endon on IrReceived#Data=FF48B7

do LED11 001000 endon on IrReceived#Data=FF6897 do LED10 001000 endon on

IrReceived#Data=FFB24D do LED9 001000 endon

rule2 on IrReceived#Data=FF02FD do LED8 000010 endon on IrReceived#Data=FF32CD do LED7 000010

endon on IrReceived#Data=FF20DF do LED6 000010 endon on IrReceived#Data=FFD0FF do LED5 000010

endon on IrReceived#Data=FF38C7 do LED4 000010 endon on IrReceived#Data=FF28D7 do LED3 000010

endon on IrReceived#Data=FFF00F do LED2 000010 endon on IrReceived#Data=FF30CF do LED1 000010

endon

rule3 on button1#state do backlog LED16 001000; LED15 001000; LED14 001000; LED13 001000; LED12

001000; LED11 001000; LED10 001000; LED9 001000 endon on button2#state do backlog LED8 000010;

LED7 000010; LED6 000010; LED5 000010; LED4 000010; LED3 000010; LED2 000010; LED1 000010

endon

rule1 1

rule2 1

rule3 1

The Wemos A0 pin is connected to the LDR with a 100K resistor added to bias A0 toward 3.3V. The

intention was to change the intensity of the LED between day and night viewing. The LEDs during

daytime are set to 16% and setting below this level does not help much with intensity. It does more

color bias at such low levels. Because of this the LEDs remain at the same brightness day and night.

The DS18B20 was mounted in the back of the frame at the bottom. This is the best location to be

isolated from any heat that may build up with the LEDs or Wemos. Temperature and A0 light intensity

are reported via MQTT SENSOR topic at 300 second intervals. STATE topic is also delivered.

15:27:16 MQT: Notify/STATE = {"Time":"2019-01-

21T15:27:16","Uptime":"0T00:05:18","SleepMode":"Dynamic","Sleep":50,"LoadAvg":19,"POWER":"OFF

","Dimmer":10,"Color":"191919","HSBColor":"0,0,10","Channel":[9,9,9],"Scheme":0,"Width":1,"Fade":"

OFF","Speed":1,"LedTable":"OFF","Wifi":{"AP":2,"SSId":"U","BSSId":"78:8A:20:84:48:1D","Channel":11,"

RSSI":80}}

15:27:16 MQT: Notify/SENSOR = {"Time":"2019-01-

21T15:27:16","ANALOG":{"A0":452},"DS18x20":{"DS1":{"Type":"DS18B20","Address":"28E36E2C000000

BF","Temperature":80.7}},"TempUnit":"F"}

Page 533

The LED color is normally controlled from other locations such as HS. Tasmota is expecting a Topic of

Notify/cmnd/LED1 RRGGBB for the case of the first LED (upper right). The 16th LED is on upper left.

Something like HS or Node Red can serve the logic function to group various low level status into the

single notification status as shown on a specific LED. Tasmota Rules can be used when there is a direct

mapping of the Tasmota device with a notification LED.

Examples of both are provided below.

Water leak detection is done by Zigbee Aqara SJCGQ11LM that is received via MQTT Topic

 zigbee/0x00158d0002334682:water_leak and mapped into HS Device

Water|zigbee|Anthem_Laundry_4682:water_leak. Nine similar sensors are located at various locations

within the house. When any of these nine report true then the HS event looking for this sends MQTT

Topic “notify/cmnd/LED16 100000” to cause the upper left LED to turn red. Other events are looking for

the LWT going offline for each sensor for a period of greater than one hour. If any of these trigger then

the MQTT Topic “notify/cmnd/LED16 101000” will be sent to turn the LED yellow.

Washing machine power use is being monitored by Sonoff S31 power plug that has Tasmota firmware

installed. A typical cycle was monitored and graph viewed shown in Figure 304. From this it could be

seen that one could be assured a load of wash was completed when power use was a low level (e.g. 100

watts) for 10 minutes. This information allowed a Tasmota rule to be formed:

 Rule2 0

Rule2 on ENERGY#POWER>100 do backlog publish notify/cmnd/LED1 001000; rule2 0 endon

Rule1 on ENERGY#POWER>100 do ruletimer1 600 endon on rules#timer=1 do backlog publish

notify/cmnd/LED1 100000; rule2 1 endon

Rule1 1

Rule2 is used to reset the notification LED to green when a load has started. Rule1 is used to detect

when the machine has stopped for 10 minutes to set the LED to red. Normally Rule1 is always active,

Rule2 is inactive and only becomes active after Rule1 has triggered and the LED set to red state.

At the end of the laundry day the Washer LED notification will show red as there was no subsequent

running of the washer. Resetting it green could be done manually via IR or button on the frame or

further automation added that will sense when the washer lid has been raised or perhaps at midnight if

one is not concerned for forgetting the washing the entire day. The Zigbee Aqara tilt sensor DJT11LM

would be a good choice for the sensing the lid as it is small and no wires needed. Just a new CR2032

coin cell would need to be replaced every year.

Another approach to using Tasmota rules is to use Events in HS to orchestrate the control of the notify

LED for the washing machine.

Page 534

Figure 304 Washing Machine Power Use

Page 535

The physical modification to the old picture frame are partially shown in Figure 305. Non-conductive

tape was placed over the frame’s original circuit board. Only the physical jack for power supply was

used from this circuit board. One can see the black and white wires coming from the bottom of the

circuit board to the pins on the Wemos. Wires are also visible from the pushbuttons that are located at

the top of the frame’s case. The wires going to the right of the case is for the addition of the DS18B20

temperature sensor. From the left side are the wires for the IR sensor, LDR and the two LED strips on

top on bottom of the front part of the frame. All wiring was stitched onto the breakout pins of the

Wemos. The original frame connectors were used or the IR sensor and panel switches. Otherwise

dupont wires were used with the male and female connection protected from separation with some

electrical tape.

Figure 305 Notification Frame Internal Wiring

The firmware installed with mcsTasmota 6.4.1.6 which is a derivative of the 6.4.1.5 Tasmota

distribution. The change that was made was a provision to restore the LED colors upon a power cycle.

Stock Tasmota had no provisions for this with the WS2812. Power up state was always all pixels off. To

activate this feature the “poweronstate 3 “ is used in Console of MQTT message.

The configuration setup of this configuration is captured in Figure 306 and Figure 307.

Page 536

Figure 306 Notify Module Configuration

Page 537

Figure 307 Notify MQTT Configuration

Page 538

20.12 CID Robocall Blocker

Robocallers are a nuisance during the day, but especially obnoxious when they come during morning or

evening hours when one is sleeping. One solution is turn off the ringer when one goes to bed, but this

prevents emergency calls from family members from being recognized.

To deal with this problem a modified Sonoff Basic was employed to recognize CID from family members

and allow these calls while blocking all other calls during the sleeping hours. Tasmota firmware 6.4.1.5

enhanced with CID recognition was used in the Sonoff.

The CID components consist of a NetCallerID that reports CID information via RS232

Figure 308 NetCallerID

and RS232 to TTL voltage level translator

Figure 309 RS232 to TTL Translator

On the translator the RTS and DTR DB-9 pins 7 and 8 were wired to 3.3V just in case the NetCallerId used

RS232 flow control.

The Sonoff pickoff points for the serial interface to RS232 are on the four-pin header shown in Section

20.9. Dupont wires were used to make the connections. The Sonoff case was modified with a cutout in

the top to allow the four wires to penetrate. The Sonoff circuit board was modified per the red circled

area of Figure 248 to convert the relay from switching mains power to completing a dry contact

connection.

Page 539

Two design options were available at the bedroom phone. One was to open the phone and run wires

to/from the ringer. This has the advantage of never inhibiting outbound calling, but disadvantage of a

wiring mess and difficulty of opening the phone.

The second is the approach is to modify the cable with the RJ12 connectors that plug into the phone so

that one of the two wires goes through the Sonoff relay. This is the approach that was taken. An

Amazon Spot exists next to the phone so that if an outbound call is desired during nighttime then “Alexa

turn on phone” is used to close the relay for a call of up to 10 (pulsetime) minutes.

A simple enclosure was printed to hold all the pieces. Inside the box is the NetCallerID and its wallwart

that is plugged into the end of an extension cord. Additional wires soldered to the extension cord to

provide power to the Sonoff. The RS232 voltage translator was wrapped in electrical tape to protect the

circuit and assure the Dupont wire connections do not come off the header. A hold in the box allowed

the power extension cord, telco connection wire and phone connection wire to penetrate the box.

Figure 310 Sonoff CID Enclosure

The Tasmota firmware required an update to support a CID whitelist. This is mcsTasmota version 6.4.1.7

(http://mcsSprinklers.com/mcsTasmota.zip). It was later updated to provide direct publish of CID

information to LED Messaging sign in mcsTasmota641Sign.bin. Provisions exist for up to 20 10-digits

numbers in the whitelist. A number in the whitelist that is received will result in the relay being closed

Page 540

for 10 (pulsetime) minutes to allow the ring and then the audio connection. Note pulsetime is a run-

time configurable setting.

This modification consists of two elements. One is to enter the numbers that form the whitelist. This is

with the Console (or MQTT/HTTP) CID# 1234567890 where # is between 1 and 20 and 1234567890 is

the ten-digit telephone number. The Tasmota backlog command can be used to enter the entire

whitelist with one command. The mcsMQTT publist is another way.

The second is to decode the serial stream from NetCallerID which consists of “NMBR1234567890.”

Where 1234567890 is the incoming CID and period is the termination. Any ten-digit number that does

not match one in the whitelist will result in the relay being open. Other data from the NetCallerID is

ignored.

Tasmota forwards via MQTT Topic/RESULT when serial data is received using “SerialRecieved” as JSON

key. If it contains “NMBR” then additional CID information is provided. The Power status on the CID is

0/1 to reflect the state of the relay or equivalently the number being in the whitelist.

{"SerialReceived":"###DATE02010920...NMBR4251234567...NAMEAnn+++",

"CID":{"Number":"4251234567","POWER":"0","Name":"Ann"}}

The remainder of the logic to achieve the desire modes of control was done using the following Tasmota

Rules:

rule1 on system#boot do backlog serialdelimiter 13; baudrate 4800; serialsend AT#CID=1;

pulsetime 600; poweronstate 4 endon

on Time#Minute=1320 do poweronstate 0 power off endon on Time#Minute=600 do

poweronstate 4 endon

on Time#Initialized do backlog event before10pm=%time%; event after10am=%time% endon

on event#before10am<600 do poweronstate 0 power off endon

on event#after10pm>1320 do poweronstate 0 power off endon

On power-up the serial connection is assured to match the expectations of NetCallerID with baudrate of

4800, <cr> as the line termination, and “AT#CID=1” as the initialization string to the NetCallerID to have

it report the CID via serial. At this time the pulsetime is set to 10 minutes which is the duration of the

relay being closed after engagement. Poweronstate is set to 4 to initially close the relay and not allow it

to be changed. Poweronstate is later modified based upon the time of day. At 10 PM (1320 minutes)

poweronstate is set to zero to allow it to be changed and then relay turned off. At this point the phone

is no longer connected to telco. At 10 AM poweronstate is set back to turn relay on and keep it on.

The remaining three lines in rule1 deal with the situation of a power cycle at some time. It will set the

poweronstate to the desired value based upon time of day when the power cycle happened.

The new commands recognized by Tasmota to support the CID are CID, CIDTopic and CIDRow as shown

in Table 5.

Page 541

Table 5 CID Tasmota Commands

Command Description

CID# number Add number to whitelist

is index in range 1 to 20

Number is 10-digit telephone number

e.g. Phone/cmnd/CID12 12345467890

CIDTopic topic Define topic to send CID info to LED Messaging

Sign

e.g. Phone/cmnd/CIDTopic LedSign/cmnd/TEXT8

CIDRow row Define row of LED Messaging Sign on which to

show CID number and name

Row in range of 1 to 10

e.g. Phone/cmnd/CIDRow 2

Other Tasmota setup is standard as shown in subsequent pictures. Note that the module type definition

does not matter.

Even though the defined rule is executed at system boot, it appears that Tasmota does not allow the

serial use to be defined at that time and accepts it only from console or perhaps MQTT. The following

should be used in the console to have the serial port used by the NetCallerID rather than the standard

user interface.

Page 542

Figure 311 Sonoff CID Module Configuration

Page 543

Figure 312 Sonoff CID MQTT Configuration

Page 544

Figure 313 Sonoff CID Other Configuration

Page 545

20.13 Reflash with Tasmota or Other Favorite Firmware

20.13.1 Tuya Version 1

The Tuya devices can be flashed with Tasmota using the procedure described on YouTube

https://www.youtube.com/watch?v=O5GYh470m5k. I have extracted the shorthand of the step-by-

step:

Parts List

-=-=-=-=-=

Raspberry Pi 3 - https://amzn.to/2SfpDQM

32gb Micro SD Card - https://amzn.to/2MwYVNY

Software and Github Links

-=-=-=-=-=-=-=-=-=-=-=-=-=-=

Etcher - https://www.balena.io/etcher/

Raspbian Stretch Lite - https://www.raspberrypi.org/downloads...

Putty (SSH) - https://www.chiark.greenend.org.uk/~s...

Tuya Convert Github - https://github.com/ct-Open-Source/tuy...

Procedure

-=-

Using Etcher, flash downloaded Raspbian Stretch Lite on SD

Using Window/Linux file system add file “ssh” to the boot partition of SD

Install SD on RPi

Use PuTTY to connect to RPi via SSH. Get the IP from router or other utility.

Login using pi raspberry for user/password

Run command “sudo raspi-config”, select advanced options then first one to expand onto entire SD

Reboot, reconnect via PuTTY

Run command “sudo apt-get update”

Run command “sudo apt-get dist-upgrade”

Run command “sudo apt-get install network-manager”

Run command “sudo apt install git”

Run command “git clone https://github.com/ct-Open-Source/tuya-convert”

Run command “cd tuya-convert”

Run command “./install_prereq.sh”

Run command “./start_flash.sh”

Follow the instructions on PuTTY window

1. Use a smartphone or other computer with WiFi to connect to the following network

WIFI: vtrust-flash

PASS: flashmeifyoucan

2. Insert Tuya device and hold button to put it in pairing mode (rapid LED flash)

https://www.youtube.com/watch?v=O5GYh470m5k

Page 546

3. Press <enter> to continue process. Be patient as dots appear on PuTTY window. The

firmware download will scroll by and be followed with prompt for one of three actions

4. Run command “curl http://10.42.42.42/flash3” which is option 3

Go to smartphone of other Wifi device and connect to Sonoff network

Use browser to get to http://192.168.4.1

Enter SSD and password for normal WiFi network where this device will eventually be run. Be careful as

recovery from a mistake here will need to reference https://github.com/arendst/Sonoff-

Tasmota/wiki/Button-usage to get Tasmota to again setup access to 192.168.4.1. Even this may not be

possible because the device button’s GPIO pin may not be what default Tasmota is expecting. There are

two SSID entries that are allowed. It is a good idea to setup a second one that is very simple so another

router can be configured with this network if necessary.

The remainder of the operation is standard Tasmota configuration setup for the device.

Subsequent flashing of Tuya devices is done by repeating the steps above highlighted in red font. Each

takes a few minutes and is actually faster than the flashing of Sonoff devices using SonOTA.exe.

It is possible in step 4 above to select Option4 to flash a custom image rather than the vanilla Sonoff

one. If this is done make certain that the SSID is not set in the image or the SSID is set one to which you

are able connect using WPA-compliant passwords (i.e. between 8 and 32 characters).

20.13.2 Tuya Version 2
Later versions of Tuya firmware are not able to be flashed with the original Tuya Convert. An update to

Tuya Convert is available with video and links available at

https://www.youtube.com/watch?v=dyUyewiKpRA and later at Tuya Convert 2.3 Update | Flash Tuya

Smartlife Devices | No Soldering! | Remove the cloud | Custom Firmware (digiblur.com) . The process is

similar as Version 1 as described in the prior section. Shorthand version is described below.

SD card for RPi is flashed with Raspian Buster Lite that can be obtained from

https://www.youtube.com/redirect?event=video_description&v=dyUyewiKpRA&q=https%3A%2F%2Fw

ww.raspberrypi.org%2Fdownloads%2Fraspbian%2F&redir_token=HY-

nuxnkaCPaxCurlGjY4WZT4lF8MTU3MzM0MDQxNkAxNTczMjU0MDE2

Once flashed the following SSH or Console commands are used:

sudo raspi-config

sudo apt install git

git clone

https://www.youtube.com/redirect?event=video_description&v=dyUyewiKpRA&q=https%3A%2F%2Fgit

hub.com%2Fct-Open-Source%2Ftuya-convert&redir_token=HY-

nuxnkaCPaxCurlGjY4WZT4lF8MTU3MzM0MDQxNkAxNTczMjU0MDE2

cd tuya-convert

./install_prereq.sh

https://github.com/arendst/Sonoff-Tasmota/wiki/Button-usage
https://github.com/arendst/Sonoff-Tasmota/wiki/Button-usage
https://www.youtube.com/watch?v=dyUyewiKpRA
https://www.digiblur.com/2020/01/tuya-convert-23-update-flash-tuya.html
https://www.digiblur.com/2020/01/tuya-convert-23-update-flash-tuya.html
https://www.youtube.com/redirect?event=video_description&v=dyUyewiKpRA&q=https%3A%2F%2Fwww.raspberrypi.org%2Fdownloads%2Fraspbian%2F&redir_token=HY-nuxnkaCPaxCurlGjY4WZT4lF8MTU3MzM0MDQxNkAxNTczMjU0MDE2
https://www.youtube.com/redirect?event=video_description&v=dyUyewiKpRA&q=https%3A%2F%2Fwww.raspberrypi.org%2Fdownloads%2Fraspbian%2F&redir_token=HY-nuxnkaCPaxCurlGjY4WZT4lF8MTU3MzM0MDQxNkAxNTczMjU0MDE2
https://www.youtube.com/redirect?event=video_description&v=dyUyewiKpRA&q=https%3A%2F%2Fwww.raspberrypi.org%2Fdownloads%2Fraspbian%2F&redir_token=HY-nuxnkaCPaxCurlGjY4WZT4lF8MTU3MzM0MDQxNkAxNTczMjU0MDE2

Page 547

./start_flash.sh

Use a smartphone or other computer with WiFi to connect to the following network

WIFI: vtrust-flash

PASS: flashmeifyoucan

20.13.3 WS-1 Smart Plug

In the case of the Tuya WS-1 mini smart plug the module was configured as Generic and the specific IO

pins mapped to the functions of the plug as shown in Figure 315. For this module the Console was used

to assure the plug is restored to same output after a power cycle “poweronstate 3”.

Figure 314 Tuya WS-1 smart plug

Page 548

Figure 315 Tuya WS-1 Smart Plug Module Configuration

Page 549

20.13.4 Luntak US101/US/102/US103/X6 WiFi Plug

Another round smart plug branded Luntak with model number US102/US102/US103/X6 is available

from Amazon

https://www.amazon.com/gp/product/B07CWQQY1Y/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&p

sc=1 sold for a package of 4 for $27 ($6.75/plug) on lightning deal. It is shown in Figure 316. These are

10A plugs with local and remote control. Three GPIO are used Relay-GPIO15, Button-GPIO13 and

indicator LED (inverted)-GPIO2. The Tasmota configuration after flashing is shown in Figure 317.

Figure 316 Luntak WiFi Smart Plug

https://www.amazon.com/gp/product/B07CWQQY1Y/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B07CWQQY1Y/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1

Page 550

Figure 317 Luntak US101/US102/US103/X6 Configuration

Page 551

20.13.5 EVA LOGIK Smartplug

Contributed by taylormia from Homeseer Message Board.

https://forums.homeseer.com/forum/lighting-primary-technology-plug-ins/lighting-primary-technology-

discussion/mcsmqtt-michael-mcsharry/1299446-cheap-tuya-smart-plug.

The EVA LOGIK smart plug https://www.amazon.com/Socket-Outlet.../dp/B06XZ3J66L and Figure

318 can be flashed with Tasmota using tuya-convert https://github.com/ct-Open-Source/tuya-

convert.

Figure 318 EVA LOGIK

The Tasmota template for this device is:

{"NAME":"EVA LOGIK

Plug","GPIO":[255,17,255,255,255,255,255,255,255,52,21,255,255],"FLAG":0,"BASE":18}

The GPIO assignments based on the Generic (18) module are shown in Figure 319.

https://forums.homeseer.com/forum/lighting-primary-technology-plug-ins/lighting-primary-technology-discussion/mcsmqtt-michael-mcsharry/1299446-cheap-tuya-smart-plug
https://forums.homeseer.com/forum/lighting-primary-technology-plug-ins/lighting-primary-technology-discussion/mcsmqtt-michael-mcsharry/1299446-cheap-tuya-smart-plug
https://www.amazon.com/Socket-Outlet-Compatible-Google-Control/dp/B06XZ3J66L
https://github.com/ct-Open-Source/tuya-convert
https://github.com/ct-Open-Source/tuya-convert

Page 552

Figure 319 EVA LOGIK Smartplug GPIO Usage

Page 553

20.13.6 WS212 WiFi Dual Plug with Energy Monitoring

The second device that was reflashed from Tuya to Tasmota was the WS212 dual plug with energy

monitoring which is available from Amazon

https://www.amazon.com/gp/product/B07G147QHX/ref=ppx_yo_dt_b_asin_title_o01_s00?ie=UTF8&th

=1 for $16. It is similar in size to the Sonoff S31 and has the advantage of dual rather than single plug.

Its downsides are 10A vs. 16A for the S31 and no easy way to open up the device.

Figure 320 WS212 dual plug with energy monitoring

This device did not have a standard configuration within Tasmota or Espurna. A new characterization

for WS212 was added to mcsTasmota 6.4.1.9 which is shown below. It is similar to the Blitzwolf plug but

uses GPIO12 for Relay #1 and GPIO 3 for the BL0937 SEL pin.

{ "WS212 Energy", // WS212 dual plug witn single button with energy monitoring (ESP8286 - BL0937 or HJL-01 Energy Monitoring)

 // NX-SP201 dual plug with dual button and energy monitoring

 // https://www.amazon.com/gp/product/B07G147QHX/ref=ppx_yo_dt_b_asin_title_o01_s00?ie=UTF8&th=1

 // https://www.amazon.com/gp/product/B07F6X4KX3/ref=ppx_yo_dt_b_asin_title_o06_s00?ie=UTF8&psc=1

 // if LED1 & 2 user defined then the following color scheme can be achieved

 // unused - blue off, violet on

 // LED_INV - clear off, red on

 // LED - blue off, red on

 GPIO_USER, //GPIO_LED2_INV, // GPIO00 Blue Led plug 2(1 = On, 0 = Off)

 0, //GPIO_USER, // GPIO01 Serial RXD and Optional sensor

 GPIO_USER, //GPIO_LED1_INV, // GPIO02 Blue Led plug 1(1 = On, 0 = Off)

 GPIO_NRG_SEL_INV, //BL0937 or HJL-01 Sel output (0 = Voltage) GPIO_USER, // GPIO03 Serial TXD and Optional sensor

 GPIO_KEY1, // GPIO4 Button 1 only on NX-SP201

 GPIO_HJL_CF, // GPIO05 BL0937 or HJL-01 CF power

 // GPIO06 (SD_CLK Flash)

 // GPIO07 (SD_DATA0 Flash QIO/DIO/DOUT)

 // GPIO08 (SD_DATA1 Flash QIO/DIO/DOUT)

 0, // GPIO09 (SD_DATA2 Flash QIO or ESP8285)

 0, // GPIO10 (SD_DATA3 Flash QIO or ESP8285)

 // GPIO11 (SD_CMD Flash)

 GPIO_REL1, // GPIO12 Relay (0 = Off, 1 = On) GPIO_NRG_SEL_INV, // GPIO12 BL0937 or HJL-01 Sel output (0 = Voltage)

 GPIO_KEY2, // GPIO13 Button 2 GPIO_KEY1,

https://www.amazon.com/gp/product/B07G147QHX/ref=ppx_yo_dt_b_asin_title_o01_s00?ie=UTF8&th=1
https://www.amazon.com/gp/product/B07G147QHX/ref=ppx_yo_dt_b_asin_title_o01_s00?ie=UTF8&th=1

Page 554

 GPIO_NRG_CF1, // GPIO14 BL0937 or HJL-01 CF1 current / voltage

 GPIO_REL2, // GPIO15 Relay (0 = Off, 1 = On)

 0, 0

 }
Each of the two plugs can be independently turned on and off. Energy monitoring is for the total utilized

by both plugs. MQTT reporting for STATE and SENSOR are shown below:

Energy/STATE = {"Time":"1970-01-

01T00:30:14","Uptime":"0T00:30:14","Vcc":3.456,"SleepMode":"Dynamic","Sleep":50,"LoadAvg":19,"P

OWER1":"OFF","POWER2":"ON","Wifi":{"AP":1,"SSId":"Anthem","BSSId":"E0:3F:49:9D:B9:68","Channel"

:8,"RSSI":66}}

Energy/SENSOR = {"Time":"1970-01-01T00:30:14","ENERGY":{"TotalStartTime":"2019-02-

23T22:32:45","Total":0.002,"Yesterday":0.000,"Today":0.002,"Period":0,"Power":1,"ApparentPower":7,

"ReactivePower":7,"Factor":0.18,"Voltage":128,"Current":0.056}}

Note that Tasmota Rules can be used for local control based upon energy use or can be used to report

other MQTT events based upon energy or other parameters such as was illustrated in Section 20.11.

Table 6 WS212 Dual plug with energy monitoring Configuration

Figure 321 Tuya WS212 Configuration

Page 555

Figure 322 WS212 Circuit Cards

Page 556

Figure 323 WS212 Circuit Interface Pinout

Relay 1

1 (TX) 3 (SEL)

GND 3.3V

Page 557

20.13.7 NX-SP201 Slitinto Dual Energy Monitoring Plug

A second energy monitoring plug was obtained from Amazon

https://www.amazon.com/gp/product/B07F6X4KX3/ref=ppx_yo_dt_b_asin_title_o06_s00?ie=UTF8&ps

c=1. It is shown in Figure 324.

Figure 324 Slitinto NS-SP01 Dual Energy Plug

It is the same height as the WS212 so will only occupy one plug in a standard wall outlet. It is wider with

a total span of about 4.5 inches. Electrically it is superior with a rated load of 15A. It has two buttons to

locally control each socket individually. The illumination on each button is from two LEDs. One is red

and it is slaved to the socket’s relay position. The other is blue which was setup in the WS212 Tasmota

configuration as user configurable, however only LED options are valid per the following

GPIO0 Led2 gives blue indication when plug 2 is off and red when it is on

GPIO0 Led2_Inv gives red when on and clear when plug is off

GPIO0 None gives blue when off and violet when on

GPIO2 has the same options for plug position 1.

https://www.amazon.com/gp/product/B07F6X4KX3/ref=ppx_yo_dt_b_asin_title_o06_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B07F6X4KX3/ref=ppx_yo_dt_b_asin_title_o06_s00?ie=UTF8&psc=1

Page 558

The energy monitoring connections and relay connections are the same internally as the WS212. The

configuration I used for the Den Heater is shown in Figure 325 using mcsTasmota641A.

This plug was configured with console “poweronstate 3” to persist on/off state after power cycles. No

rules were added. Primary use is tracking energy use of the Den Heater.

Figure 325 Slitinto NX-SP201 Dual Energy Plug Configuration

Page 559

20.13.8 BN-LINK BNC-60/U133TJ Energy Monitor Plug (BL0937)

The BN-LINK is a value-priced plug that supports 15 Amps and contains energy monitoring using the

BL0937 chip. Available at

https://www.amazon.com/gp/product/B07CX5KLXN/ref=ppx_od_dt_b_asin_title_s00?ie=UTF8&psc=1

as well as other mass outlets such as https://www.walmart.com/ip/BN-LINK-2-Pack-Smart-Wi-Fi-Plug-

Outlet-with-Energy-Monitoring-and-Timer-Function-No-Hub-Required-Works-with-app/933347753. The

Amazon offering lightning deal was $7.25/plug in pack of 4.

It‘s dimensions allow two plugs to be installed in a standard duplex outlet with an overhang on the right

side of the outlet. It is pictured in Figure 326.

Figure 326 BN-LINK Smart Plug with Energy Monitoring

The device has a single button, single relay and a pair of status LEDs that show through the button. Red

and Blue colors are used for the two LEDs. Construction appears solid when the top is popped off as

shown in Figure 327. The relay is GOLDEN GJ-1A-5L rated at 15A/125V, 12A/277V. Based upon size of

the digital board it appears to ESP8285.

https://www.amazon.com/gp/product/B07CX5KLXN/ref=ppx_od_dt_b_asin_title_s00?ie=UTF8&psc=1
https://www.walmart.com/ip/BN-LINK-2-Pack-Smart-Wi-Fi-Plug-Outlet-with-Energy-Monitoring-and-Timer-Function-No-Hub-Required-Works-with-app/933347753
https://www.walmart.com/ip/BN-LINK-2-Pack-Smart-Wi-Fi-Plug-Outlet-with-Energy-Monitoring-and-Timer-Function-No-Hub-Required-Works-with-app/933347753

Page 560

Figure 327 BN-LINK Component Side Circuit Board

The BL0897 was mounted on the bottom of the main circuit board. It was not visible until a cutout was

made through the bottom of the case. This is shown in Figure 328 . Epoxy was used to replace the

bottom cutout. Since the ESP was covered with a metal shield it was not possible to trace pins. The

back of the digital card did have labeled pads of the following GPIO in order from left to right: 5, 0, 4, 13,

2, 3, 12, 14, RST. Tracing from the BL0937 pins (Figure 329 U4) to the pins on the digital card (left

bottom in figure) allowed the power monitoring configuration to be determined.

Page 561

Figure 328 BN-LINK Main Circuit Bottom

 }

Figure 329 BL0937 Pinout

Page 562

The LED, Relay and Button pins were determined by experimentation from the Generic Tasmota

template. The configuration defined is shown below:

{ "BN-LINK Energy", // BN-LINK Energy Monitoring model BNC-60/U133TJ (BL0937)

 /https://www.amazon.com/gp/product/B07CX5KLXN/ref=ppx_od_dt_b_asin_title_s00?ie=UTF8&psc=1

 0, // GPIO00

 GPIO_LED2_INV, // GPIO01 Red Led (1 = On, 0 = Off)

 0, // GPIO02

 GPIO_KEY1, // GPIO03 Button

 GPIO_HJL_CF, // GPIO4 BL0937 power

 GPIO_NRG_CF1, // GPIO05 BL0937 current / voltage

 // GPIO06 (SD_CLK Flash)

 // GPIO07 (SD_DATA0 Flash QIO/DIO/DOUT)

 // GPIO08 (SD_DATA1 Flash QIO/DIO/DOUT)

 0, // GPIO09 (SD_DATA2 Flash QIO or ESP8285)

 0, // GPIO10 (SD_DATA3 Flash QIO or ESP8285)

 // GPIO11 (SD_CMD Flash)

 GPIO_NRG_SEL_INV, // GPIO12 BL0937 Sel output (0 = Voltage)

 GPIO_LED1_INV, // GPIO13 Blue Led (1 = On, 0 = Off)

 GPIO_REL1, // GPIO14 Relay

 0, // GPIO15

 0, 0

The binary that includes the BN-LINK option is at http://mcsSprinklers.com/mcsTasmota.zip with file

mcsTasmota641B.bin. The corresponding source is at

http://mcsSprinklers.com/mcsTasmota_Source_641B.zip

The Tasmota configuration is shown in Figure 330. Reporting on the main page is shown in Figure 331.

http://mcssprinklers.com/mcsTasmota.zip
http://mcssprinklers.com/mcsTasmota_Source_641B.zip

Page 563

With the other energy plugs that have been converted to Tasmota the voltage appeared reasonable out

of the box so no calibration was done. With this one the voltage was showing 143 vs. the digital multi-

meter of 120 so calibration is needed in this case. A Kill-A-Watt or other known standard can be used to

assist in the calibration. The Tasmota Console commands are below as needed. Full Tasmota options

can be found at https://github.com/arendst/Sonoff-Tasmota/wiki/Commands.

CurrentSet <value> = calibrate current to target value in mA

VoltageSet <value> = calibrate voltage to a target value in V

PowerSet <value> = calibrate power to a target value in W

FrequencySet <value> = calibrate frequency to a target value in Hz

Figure 330 BN-LINK Configuration

https://github.com/arendst/Sonoff-Tasmota/wiki/Commands
https://github.com/arendst/Sonoff-Tasmota/wiki/power-monitoring-calibration
https://github.com/arendst/Sonoff-Tasmota/wiki/power-monitoring-calibration
https://github.com/arendst/Sonoff-Tasmota/wiki/power-monitoring-calibration
https://github.com/arendst/Sonoff-Tasmota/wiki/power-monitoring-calibration

Page 564

Figure 331 BN-LINK Status Display

Page 565

20.13.9 Wheswell USB Power / Mains Power Wifi Power Strip with Surge Protection

The Wheswell ZLD-44USA-W Wifi Power Strip is available from Amazon for $27

https://www.amazon.com/gp/product/B0796R56J8/ref=ppx_yo_dt_b_asin_title_o02_s01?ie=UTF8&psc

=1 and lightly cheaper if obtained on a deal. It is a well built unit and decent power handling capacity of

1875 watts total; 10 amps per plug. USB power is 6 amps total or 2.4 amps/plug. The unit has LED

feedback for each of four power plugs and the bank of USB plugs. Each can be individually controlled via

WiFi. There also exists a button with LED feedback. It is shown in Figure 332.

Figure 332 Wheswell Model ZLD-44USA-W WiFi Power Strip

The Tasmota configuration that I setup is shown in Figure 335. Relay 1 (which is only a LED) and Button

1 are used to act as master control for the strip. Rules are used to slave the other five relays to their

previous On state or all Off state depending upon Relay 1 state. Relay 6 is for the USB and Relay 2, 3, 4

and 5 for the four mains plugs.

The Alexa HUE emulation will only support four Relays so this setup has overall control and control of

three of the mains plugs via Alexa. The other mains plug and the USB can be controlled via HTTP or

MQTT, but not Alexa directly.

https://www.amazon.com/gp/product/B0796R56J8/ref=ppx_yo_dt_b_asin_title_o02_s01?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B0796R56J8/ref=ppx_yo_dt_b_asin_title_o02_s01?ie=UTF8&psc=1

Page 566

As I was identifying the GPIO configuration I had setup something that prevented the unit from booting.

This gave me reason to open it up so it could be reflashed via serial connection. The 3.3v, Gnd, Rx and

Tx pads were available at the edge of the circuit card and the GPIO was a pad in the middle of the card.

All were labeled so not much effort to do the serial programming. The top of the digital card has the

etched WiFi antenna. This can be seen in Figure 333. Figure 334 shows the bottom with the full back of

the mains circuit card and the solder connects/breakout for the serial programming.

Figure 333 Wheswell Power Strip Digital Card (back)

Page 567

Figure 334 Wheswell Mains circuit card with digital serial breakout

Page 568

Figure 335 Tuya Wheswell Power Strip Configuration

Page 569

20.13.1 JINVOO Water Shutoff Valve
The water shutoff valve under the JINVOO name is available at Amazon

https://www.amazon.com/gp/product/B07F36MVVT/ref=pe_2640190_232586610_pd_te_s_mr_im?_e

ncoding=UTF8&pd_rd_i=B07F36MVVT&pd_rd_r=0Z5SS3KR5QJZSZ5RNKPH&pd_rd_w=LR4Kg&pd_rd_wg

=wYgrA I found it as a lightning deal for $28. Even at regular price it is a far more cost effective water

shutoff than the HS-WV100+, FortrerzZ, WaterCop which requires pluming changes and even similar

products that do not require plumbing modifications such as Guardian, or Dome. A good comparison is

at https://www.diycontrols.com/t-automatic_water_shut_off_valves.aspx.

The unit has easy access with four screws, but the ESP8266 access is very hard and no exposed pins

were obvious for Rx and Tx and GPIO0. Fortunately, TuyaConvert version 2 does work for this device.

Its GPIO configuration is shown in Figure 337. This image is from a HomeAssistant thread

https://community.home-assistant.io/t/has-anyone-implemented-the-jinvoo-wifi-smart-valve-sm-

aw713/101542 but it was found to not be the same as a similar branded unit I obtained. The

configuration for my unit is shown in Figure 336.

This device does have a bistable relay. When power is lost the valve remains in the position that it was

when power was lost. Tasmota should be configured with powreonstate of 3 so that when power is

restored the valve will not be commanded to another position.

Initial attempt for the GPIO configuration used the information from a Home Assistant site shown in

Figure 337. This failed so via experimentation the following was determined. This resulted in a

configuration shown in Figure 336.

GPIO4 Blue LED

GPIO5 Red LED

GPIO12 Relay

GPIO13 Button

https://www.amazon.com/gp/product/B07F36MVVT/ref=pe_2640190_232586610_pd_te_s_mr_im?_encoding=UTF8&pd_rd_i=B07F36MVVT&pd_rd_r=0Z5SS3KR5QJZSZ5RNKPH&pd_rd_w=LR4Kg&pd_rd_wg=wYgrA
https://www.amazon.com/gp/product/B07F36MVVT/ref=pe_2640190_232586610_pd_te_s_mr_im?_encoding=UTF8&pd_rd_i=B07F36MVVT&pd_rd_r=0Z5SS3KR5QJZSZ5RNKPH&pd_rd_w=LR4Kg&pd_rd_wg=wYgrA
https://www.amazon.com/gp/product/B07F36MVVT/ref=pe_2640190_232586610_pd_te_s_mr_im?_encoding=UTF8&pd_rd_i=B07F36MVVT&pd_rd_r=0Z5SS3KR5QJZSZ5RNKPH&pd_rd_w=LR4Kg&pd_rd_wg=wYgrA
https://homeseer.com/z-wave-water-valves/
https://www.fortrezz.com/water-valves
https://www.watercop.com/?gclid=Cj0KCQiAtf_tBRDtARIsAIbAKe3a6w-Ys-LcupReqBAehrO2UX154alHZZtlCvkKEtESHo1-Mpvbc2caApXyEALw_wcB
https://www.amazon.com/Guardian-Leak-Prevention-System-cutting/dp/B07665QCT4/ref=sm_n_au_dka_US_pr_con_0_0?adId=B07665QCT4&creativeASIN=B07665QCT4&linkId=21c5023b9027c8a197a93bd095c39b06&tag=hhmfindoutmore-20&linkCode=w41&ref-refURL=https%3A%2F%2Fwww.householdme.com%2Fbest-wireless-water-shut-off-valves-smart-valve-guide%2F&slotNum=0&imprToken=nUUzBOZwgUwORbj3mOZ3uQ&adType=smart&adMode=auto&adFormat=grid&impressionTimestamp=1572903494946
https://www.zwaveproducts.com/products/dmwv1-dome-dmwv1-z-wave-plus-water-shut-off-valve-for-pipes-up-to-1-1-2?variant=22465774256213¤cy=USD&utm_campaign=gs-2019-09-18&utm_source=google&utm_medium=smart_campaign&gclid=Cj0KCQiAtf_tBRDtARIsAIbAKe1krbL_0xWTeRtZbHn7D8CEjRZ45cOjsM8rOt6fRPXM-tRDliT90dsaAn7TEALw_wcB
https://www.diycontrols.com/t-automatic_water_shut_off_valves.aspx
https://community.home-assistant.io/t/has-anyone-implemented-the-jinvoo-wifi-smart-valve-sm-aw713/101542
https://community.home-assistant.io/t/has-anyone-implemented-the-jinvoo-wifi-smart-valve-sm-aw713/101542

Page 570

Figure 336 JINVOO Water Valve GPIO Configuration

Page 571

Figure 337 Other Water Shutoff Valve GPIO Setup

Page 572

TWE1S Module is used by many devices that host Tuya firmware. Many times they are accessible when

the package is opened. This will allow access to flash the device using serial connection. This and other

modules are described in https://docs.tuya.com/docDetail?code=K8uhkbx8bzbiw.

https://docs.tuya.com/docDetail?code=K8uhkbx8bzbiw

Page 573

Figure 338 TWE1S Module Pinout

Page 574

20.13.2 Switchbot Mini Plug
Switchbot mini plugs contain power monitoring and utilize an ESP32-C3.

Amazon sells them at

https://www.amazon.com/dp/B09YV2L3MN?psc=1&ref=ppx_yo2ov_dt_b_product_details at the time I

purchased a box of 4 they well selling for $25.50 or a little over $6 per plug. A good value for both 15A

(resistive) and power monitoring.

They can be opened by breaking plastic seal on the bottom and flashed via GPIO pins, but an OTA

method was developed per GitHub - kendallgoto/switchbota: Replaces the factory firmware on the

SwitchBot Plug Mini via OTA, enabling the use of Tasmota without disassembling the unit. A good video

showing the firmware install process is at SwitchBot ESP32-C3 Plug/Bulb to TASMOTA ESPHome | NO

Solder Upgrade - YouTube .

The methodology employed is to setup a local host DNS override on the domain www.wohand.com.

This is the domain the switchbot plug uses to communicate with the switchbot App. A little server

application is then run at the new local target of the www.wohand.com domain. When a firmware

update request is made this server will field the request and install Tasmota rather than what may be

available on the wohand server.

The first step is to setup the local host overrided. It is typically on the router. The setup of some

popular routers is contained in Confusion on how to OTA · Issue #3 · kendallgoto/switchbota · GitHub . I

used pfSense and setup DNS Resolver service for the host override with host field blank and domain

field www.wohand.com. The local IP was for my laptop.

https://www.amazon.com/dp/B09YV2L3MN?psc=1&ref=ppx_yo2ov_dt_b_product_details
https://github.com/kendallgoto/switchbota
https://github.com/kendallgoto/switchbota
https://www.youtube.com/watch?v=iTexFQ0Th0I
https://www.youtube.com/watch?v=iTexFQ0Th0I
https://github.com/kendallgoto/switchbota/issues/3#issuecomment-1121828064

Page 575

I installed the nodejs server application on this laptop; opened a command window; entered “npm i” to

get all the reference libraries; entered “node index.js”. This starts the server listening on port 80. I did

not have anything else running on port 80 on this laptop at this time. I installed four plugs and did not

need to restart the server application during the process.

The second step is to get the switchbot plug onto the WiFi network. The switchbot App from Google

Play Store is used for this. The plug communicates via both WiFi and Bluetooth. Since wohand.com

cloud is no longer available the plug needs to be manually added. Select the mini plug from the icon

menu at the bottom. It will be with Bluetooth connection to the ESP32. The on/off switch is held for a

couple seconds to start its LED flashing. The App will then prompt for the SSID and WiFi password. It

will also give you chance to give the plug a name. It will be later useful to know the BLE MAC of the plug

so navigate the App for Device Info and notate the BLE MAC. This is the end of the use of App for this

plug.

Bluetooth is used to make the request for a firmware update. Google play store has “nRF Connect” to

accomplish this. When the nRF Connect is started it will scan the Bluetooth devices and list them. Click

on the MAC for the plug. The Client tab will be used to interact with the plug. Select Unknown Service /

Unknown Characteristic. Where it shows WRITE, WRITE NO RESPONSE there will be an uparrow that

allows uploading data. Click the uparrow, select BYTE ARRAY and enter “570F0A010C”. This will result

in the console window where the local server is running to echo that it is installing a WoPlugUS_V12.bin

file. Give it about 40 seconds and then it will be ready to install Tasmota. Start this in a similar manner

with nRF Connect with the BYTE ARRAY “570F0B”. The server’s console will show it is installing

payload.bin. The image below shows the server handling each of the four plugs that were done.

Page 576

After a few minutes Tasmota will be running on the plug. It will open a WiFi SSID with name starting

with Tasmota… Connect to this SSID and navigate to 192.168.4.1 with a browser. I used same laptop

running the server for this. Tasmota will allow you to enter your network SSID and password and then

restart again.

The plugin needs to be configured for the GPIO pins being used. This is most easily done using the
template

{"NAME":"W1901400","GPIO":[0,0,32,0,0,0,224,320,321,0,0,0,0,0,0,0,0,0,2720,2656,2624,
0],"FLAG":0,"BASE":1}

It is entered on the Configuration page, Configure Other link. The Activate checkbox also needs to be

clicked. At this same time the name to be used for the plug can be setup. Other configuration that can

be done is the MQTT Broker, MQTT Topic on the MQTT Setup link. A second WiFi SSID can also be

added on the WiFi page.

The last step is the calibration of the energy management functions per Power Monitoring Calibration -

Tasmota where the powerset, voltageset and currentset commands are used at the console.

https://tasmota.github.io/docs/Power-Monitoring-Calibration/#setup
https://tasmota.github.io/docs/Power-Monitoring-Calibration/#setup

Page 577

20.14 Closet Door Light Control and Monitor

An after-the-fact light was installed in the main coat closet. The switch used for control of the light was

mounted in the door frame and mains power routed through the switch. While this works well for

shining light in the closet when the door is open, it has the downside of continuing to shine the light if

the door is left ajar. To address this issue a Sonoff Basic was used in conjunction with the door jamb

switch and a RCWL-0516 microwave radar motion sensor. When the door is closed the Sonoff makes

certain the light is OFF. When the door is open the motion sensor retriggers a 100 second timer to keep

the light on. If no motion for 100 seconds then the light turns out. If sometime later somebody

approaches the closet the light will turn on again unless the door has been closed.

A 33,000 microfarad capacitor was placed between the power terminals of the motion sensor to

minimize interference of this sensor with the power to the ESP8266 of the Sonoff Basic.

The RCWL-05016 is powered from 5VDC so the pickoff was at the voltage regulator of the Sonoff. This is

shown in Figure 279. The sensor output to GPIO14 which is available at a header. Ground to the sensor

is also available at the Sonoff header.

The door open contact sensor was connected at the Sonoff header to GPIO1 (TX). If this switch was not

already mounted in the door jamb a basic window/door sensor as shown in Figure 339 would have been

used to sense door open vs. closed. This is a reed switch and magnet to provide a dry contact signal.

Page 578

Figure 339 Generic Door-Window Sensor

Any version of Tasmota that supports Rules can be used. Rules were introduced in version 5.9. The

module configuration is shown in Figure 340. The rules employed are shown below. Poweronstate

assures the light is at the same state should a power cycle occur. Swithmode specify that the status

follow the polarity of the door open sensor and the reverse-polarity of the radar sensor. Rule1 is for

when the door is closed and Rule2 for when it is open. Rule1 turns the light on when the door sensor

opens and enables Rule2. Rule2 keeps the light on as long as there is motion from the radar sensor and

when the door closes it enables Rule1.

poweronstate 3

switchmode2 2

switchmode3 1

rule1 on system#boot do var1 0 endon on Switch2#State do power1 %var1% endon on

Switch3#State=1 do backlog power1 1; var1 1; rule2 1; rule1 0 endon

rule2 on Rules#Timer=1 do power1 0 endon on Switch2#State do backlog RuleTimer1 100;

power1 1 endon on Switch3#State=0 do backlog var1 0; power1 0; rule1 1; rule2 0 endon

Page 579

An addition could be made to Rule2 that sends MQTT message to tell the automation system that

somebody should close the closet door. Its effectiveness will depend upon who is listening to the

automation system (i.e. HS).

Figure 340 Closet Light/Monitor Configuration

A case was printed to house the radar sensor and Sonoff Basic. The case on the Sonoff Basic was not

used since the printed case protects the device. This is shown in Figure 341 and Figure 342. Corners of

the case have provisions for screws on two corners to mount into the back of the closet wall. Cutouts

were included for heat control and access to the manual on/off button (GPIO0) of the Sonoff.

The wiring between power and the light is done in a j-box that contains a power receptacle. One side of

the receptacle is standard power wiring and used to power the Sonoff. The other side was decoupled

and contains the output of the Sonoff to control the light. The light is plugged into the lower receptacle;

The Sonoff into the upper one. The wires from the case, save the power plug, were routed to inside the

Page 580

j-box. Knurl plugs used to make the connection with the previously installed door jamb switch wires.

The plug receptacle screw connection was used for the Sonoff output where the light plug is inserted.

Plastic cable management channels where used to hide wiring from the Sonoff to the j-box. This could

have been done behind the wallboard as well since the wiring runs were only one foot and placement

not critical. The back of the closet, however, did not warrant too much effort since everything is behind

the hanging coats.

Figure 341 Closed Light Contol Case Top

Page 581

Figure 342 Closet Light Control Internals

In the case where power to the light is from the ceiling and a switch such as a pull string is used the

same approach can be used. Likely an extension to the light fixture j-box would be installed using a

plastic extension. If a metal one is used then the Sonoff and Radar sensor would need to be mounted

outside the j-box since they are both RF devices. The Sonoff would receive full time power and the light

would receive the Sonoff output.

The placement of the radar sensor is not critical since it is Omni-directional with range beyond the size

of a closet. The door open/close sensor can be any dry-contact type device. I did explore the use of

trigboard which is a WiFi device that sleeps until awaken by the sensor change of state. This would

eliminate the wire from door sensor to the Sonoff. The problem I had with this device is that it could

only awaken on a positive or a negative edge, but not both. It would work to turn the light on, but

sensing the door closed could only be done on a hourly basis when the trigboard wakes up to report

battery level.

Page 582

20.15 Fake TV

A Fake TV is an item that simulates the light that is produced while watching a typical television. The

simulated light patterns are produced by Neopixels. The core product is described in

https://learn.adafruit.com/fake-tv-light-for-engineers/overview where a Arduino Uno is used to produce

the light transitions.

I had a Uno that had been sitting around for years so this became a good use. In addition to the light

control I also wanted to have remote control to enable and disable as well as automatically control the

time of day when the simulated TV is on.

One approach was to augment the sketch loaded in the Uno. The concern is the effect that

management software would have on the timing of the Neopixel control. Rather than changing

software a more straightforward approach seemed to be changing the hardware to add a Sonoff Basic

with Tasmota to perform the management.

The Uno and the Neopixels work off of 5V and the Neopixels current draw likely is beyond the capability

of the 5V power supply built into the Sonoff. A wallwart of 0.5A was used for the project to power the

Sonoff, Uno and Neopixels. The Sonoff power supply was no longer needed so a cut was made on the

power resistor next to the relay to isolate the power supply. The 5VDC was provided directly from the

wallwart to the input side of the 3.3V regulator. Figure 279 shows the connection point for the 5VDC.

The Sonoff relay will now be switching 5VDC power to the Uno. The walwart is wired to the power input

of the Sonoff. The negative side of the wallwart input is the ground so it was soldered on the circuit

card so the neutral input screw terminal was wired to the digital grounds of the circuit card. The relay

now switches 5VDC rather than mains since the input is 5VDC rather than mains level.

As a bonus a temperature probe DS18B20 was also wired to the Sonoff GPIO14 input header. A 4.7K

resistor was used to pull up this pin to 3.3v which was also on the header. It was not needed for the

lighting control, but just became a convenient place to install a temperature sensor for the area of the

room where the TV is located.

Standard Tasmota firmware with a compile that supports DS18B20 is used. Tasmota timers from the

web GUI were setup for the daily timing of when the simulated TV is on and off. Remote control and

temperature reporting are via MQTT topics. Figure 344 shows the configuration to control the relay and

provide the temperature.

A case was printed with the Uno resting on the bottom and the Sonoff cradled above it. Dupont wires

were used from the Uno header pins to the Neopixels and for the power wires from the Sonoff relay

output. This is shown in Figure 343. The unit was installed in an alcove above the regular TV to

maximize the appearance that the light was coming from the real TV.

https://learn.adafruit.com/fake-tv-light-for-engineers/overview

Page 583

Figure 343 Fake TV Physical Construction

Page 584

Figure 344 Fake TV Configuration

Page 585

20.16 Bluetooth Low Energy Scanner

20.16.1 ESP32 Beacon Tracking
The prototype described in Section 20.16.7 demonstrated the ability to find BLE beacons using ESP32.

This section describes the development and use of multiple ESP32 as scanners to perform triangulation

to assess each beacon X/Y location. Use of one ESP32 has the ability to detect presence of a beacon.

Use of two ESP32 has the ability to identify the relative location of beacons between the two ESP32.

Use of more than two has the ability to identify the beacon position on a 100 x 100 X/Y grid.

The firmware for the ESP32 is a port of Tasmota for ESP8266. The starting point is located at

https://github.com/btsimonh/Sonoff-Tasmota/tree/esp32-dev-firsttest which is based upon Tasmota

5.12.0c. Issues exist with this baseline with respect to keeping time of day, but this functionality is not

needed for the beacon scanning functionality. New source and binary are located at

http://mcsSprinklers.com/BLEScannerSource.zip. Binary only is also contained in

http://mcssprinklers.com/ESP32BLEScanner.zip.

Initial flashing of the ESP32 must be done using serial connection. Subsequent flashing can be done

Over The Air (OTA). The partition of the 4Mb flash is shown below. It is defined to maximize the size of

program space while still allowing OTA programming. The BLE libraries are large and account for most

of the delta from the basic ESP32 Tasmota and the one with the scanning functionality. Approximately

1.8Mb of the partitioned 2.0Mb is being used. Static RAM space grew by 1.5K and is now at 3K. Total

RAM available for static and dynamic is 4K. Growth is primarily for the beacon address and friendly

names. Provisions are made for 10 ESP32 scanners and 50 beacons.

otadata, data, ota, 0xe000, 0x2000,

app0, app, ota_0, 0x10000, 0x1F0000,

app1, app, ota_1, 0x200000,0x1F0000,

eeprom, data, 0x99, 0x3F0000,0x1000,

spiffs, data, spiffs, 0x3F1000,0xF000,

New MQTT/Console commands have been added as shown in Table 7. The first must be entered at the

console as this forms part of the MQTT topic. The others can be done via MQTT publish or the Tasmota

Console.

20.16.2 Beacon Location Algorithm
The process for positioning a beacon is done in a two-step process. The first is distance and the second

is triangulation. Distance is based upon the RSSI delivered in the Bluetooth data. Distance is measured

from a defined location of scanner. The “ScannerLocation” topic is used to setup each scanner’s

position.

Different beacons transmit with different power levels so the RSSI needs to be normalized. The

calibration is done by taking two measurements. One with the beacon located 1 meter from the

scanner. The other when it is located 10 meters away. There is much jitter and drift with the RSSI

measurements due to external disturbances. It may even be the case that the 10-meter reading will not

be available and it that case extrapolate from one that can be made at a shorter distance. I have used -

100 as a ballpark in this case. Picking values is not critical because the intent is providing an

https://github.com/btsimonh/Sonoff-Tasmota/tree/esp32-dev-firsttest
http://mcssprinklers.com/BLEScannerSource.zip
http://mcssprinklers.com/ESP32BLEScanner.zip

Page 586

approximate position and not an exact location of a beacon. The two reading are communicated to the

scanners via the “Beacon1Power” and “Beacon10Power” topics.

The RSSI and distance have a logarithmic relationship. If one was to use RSSI directly as a distance

measurement then distances for highly negative RSSI would appear to much shorter than they are.

Inspiration for the equation used by mcsMQTT was obtained from

https://iotandelectronics.wordpress.com/2016/10/07/how-to-calculate-distance-from-the-rssi-value-of-

the-ble-beacon/ which was also referenced sites at Estimote.com, Kontakt.com and quora. The

equation presented there is:

Distance = 10^((RSSI @ 1 meter) – (RSSI))/(10*Environment)

The equation used is:

Distance = 10^((RSSI @ 1 meter) – (RSSI)) / (RSSI @ 1 meter – RSSI @ 10 meter)

Converting multiple distance vectors to a X and Y coordinate depends upon the number of scanners that

are able to see the beacon and calculate the distance from its location. If there is only one distance

available then it could be anywhere on a circle (or sphere) with the center at the scanner’s location.

mcsMQTT will report the scanner X,Y in this case.

If there are two distances then mcsMQTT will report a X,Y on a line between the location of the two

scanners. It will use the weighted contribution of each distance measurement where the weight goes to

the scanner location that has the shorted distance identified.

As an example, assume two scanners with one at (0,100) and another at (50,40). The beacon distance

computed for the scanners are 10 and 20 respectively. The inverse of the distance is used for the

weighting so 0.1 and 0.05. The beacon is then located at:

X = 0 * (0.1/(0.1+0.05)) + 50 *(0.05/(0.1+0.05)) = 17

Y = 100 * (0.1/(0.1+0.05)) + 40*(0.05/(0.1+0.05)) = 79

Three and more scanners that can see the beacon will provide the best location determinate using a

trilateration algorithm such is used to identify the epicenter of an earthquake based upon the

seismometer readings at different locations. The distance vector computed by the scanner is the radius

of a circle defined at (x-xn)2 + (y-yn)2 = rn
2. Solving for pairs of these equations allows the second order

terms to dropout thus making the solution a simple linear set of equations. The mcsMQTT

implementation is modeled closely after the description provided at

https://everything2.com/title/Triangulate. When more than three scanners can see a beacon then the

same algorithm is used to obtain multiple results and then average the X and Y of each result.

20.16.3 BLE Scanning & Reporting
Two scanning parameters can be tweaked. “ScannerInterval” is the period or interval for each scan.

“ScannerDuration” is the duration of each scan. The default is a 30 second scan every minute. The time

when scanning is not performed is used for two purposes. One is to allow the antenna to be dedicated

to WiFi. During scanning the antenna is multiplexed with priority given to WiFi. The other use is for

https://iotandelectronics.wordpress.com/2016/10/07/how-to-calculate-distance-from-the-rssi-value-of-the-ble-beacon/
https://iotandelectronics.wordpress.com/2016/10/07/how-to-calculate-distance-from-the-rssi-value-of-the-ble-beacon/
https://everything2.com/title/Triangulate

Page 587

analysis on the results of the scan. It appears that analysis is well under one second so a minimum of

one second is assured between the duration and the interval of the scan.

Shorter intervals should result in a more responsive recognition of a beacon that has moved, but short

duration scans may not provide sufficient time to catch a beacon’s announcement and this may make

the beacon appear to be out of range. A 10 to 15 second scan duration appears to be sufficient for the

beacons that I have been using.

With several scanners and many beacons, the amount of MQTT traffic can be significant if status is

reported on every scan. The exchange of RSSI measurements among scanners is needed so

triangulation can be performed to locate a beacon. However, for a beacon that is not moving there is no

need to report the information from the latest scan if there is no material change in the data. The

“BeaconReportingMode” topic is used to select the events upon which a beacon location report is made.

One of three reporting modes can be selected. One is report on every scan. This is useful when initially

looking at the scanner’s information. The second is to only report when the computed X or Y coordinate

of a beacon changes. If no filtering is done then it is likely that most scans will result in a slightly

different set of coordinates. When one or both Kalman filters are used the coordinates will be more

stable, but also be dependent upon the measurement error defined for the filter. The third reporting

mode is based upon a change in the calculated zone. The zone has hysteresis parameter so coordinate

calculations that only bounce around within this hysteresis window will all look to be the same and no

reporting will be done. The downside of a large zone hysteresis is that the other scanners will not be

getting updates of changes in the RSSI measured by the other scanners and this could degrade into no

scanner reporting. To overcome this downside to some degree all scanners will provide an update once

every five minutes.

20.16.4 Signal Processing Filters
Three types of filters are used to improve the location determination. The Kalman filter operates on the

principle of making a prediction of what the next measurement should be and then assess the error in

the prediction vs. the actual measurement. At the same time the measurement is also known to have

variability (i.e. error). This measurement variability is a user parameter. When the measurement is

considered to have little error, it will be trusted more and the output of the filter will be responsive to

change in the latest measurement. If there is high uncertainty of individual measurements, yet they all

locus on the real value then the average of past values will be used for the filter output.

The beacons that I have been using change RSSI by about 30 when moving from the scanner to out of

range. If we consider a 20% uncertainty of any given measurement then the measurement error used

for RSSI filter will be 6. The same measurement error value is used for all beacons seen by a scanner and

since all scanners are intended to be identical this RSSI filter values is used throughout the system.

Experimentation for each user is needed to find a good balance of responsiveness vs. stability. The topic

to set the RSSI error is “BeaconRssiError”.

The second type of filter is a timeout. It is used for beacons where the advertisement is temporarily

lost. It is also used to handover the master role from a scanner that has stopped reporting. The

dropped beacon timeout is a user parameter. The non-reporting scanner is determined from the LWT

message from the MQTT broker.

Page 588

If we look at a scenario where four scanners are all seeing a given beacon. The beacon location will be

calculated by the average of two three-point triangulations. If one scanner loses the beacon then the

location is based upon the results of a single three-point calculation. This will change the reported

beacon location somewhat. If a second scanner loses the beacon then triangulation is no longer

possible. The calculation reverts to a weighted average based upon the remaining two reading and this

result will try to position the beacon somewhere on a line between the two scanners. If there is only

once scanner that sees the beacon then the location will be calculated as being at the same location as

the scanner.

Because of the above scenario there needs to be tolerance to short term losses of beacon by a scanner.

When it is lost the scanner will not calculate a new set of data but will continue to use the same data

that was last calculated when it had visibility of the beacon. I have observed often two or three scans

without a beacon reporting even though the beacon was close to the scanner. I have not done analysis

of a large history of data to determine if three is typical or some other value should be expected

tolerance level for dropouts. The downside of selecting a large dropout count tolerance is that a beacon

that has moved will not be first sensed until after the timeout and then not reported until the effect

works its way through the Kalman filter. The topic “BeaconDropout” is used to set the count of

consecutive scans without beacon presence before the beacon is no longer reported as present from

the scanner.

This is where the second Kalman filter plays a role. It will tend to smooth the X and Y location

calculation and reduce the effect of scanners that drop out of the calculation. The XY Kalman filter will

allow smaller dropout count filters since the effect of the dropout will not immediately propagate

through the Kalman filter. The XY Kalman filter error term is set using the topic “BeaconXYError”.

The third type of filter is hysteresis that is use for the Zone reporting. The Zone is a single value that is

calculated as 100 * X + Y. The magnitude of hysteresis filter “BeaconZone” will determine how much

either X or Y needs to change from the prior reported value of Zone before a new Zone will be reported.

For example, starting with X=10, Y=20 and BeaconZone=5, the first report will be with Zone=1020. If in

the next three scans the X changes to 11, 9, 14 and Y changes to 22, 23, 24 then Zone will continue to be

reported as 1020. If on the fourth subsequent scan the X=13, Y=26 then Zone will be reported as 1326

and this will be the new center of the hysteresis window.

If any of the Kalman, dropout or hysteresis filters are to be turned off then publish the topic with

payload set to 0.

20.16.5 Beacon Management
The ESP32 retains through power cycles information about the beacons it has already observed. Since

the scanners share information to assure they are all reporting the same a beacon that is seen by one

scanner is captured by the others when the first reports the beacon status. Non-volatile memory has

been reserved for 50 beacons.

A beacon is identified by its MAC address. A scanner is identified by an instance number. The topics are

formed from a base which is by default “BLEScan”, followed by the scanner number and then followed

by the topic of interest. In the case of beacon reporting the topic of interest is the friendly name of the

beacon. The name can be up to 17 characters. Until a name is defined the name will be a derivative of

the MAC address. A typical beacon topic will then be BLEScan/1/MyBeacon.

Page 589

Since most commands apply to all scanners it is desirable that one topic sent can be understood by all.

This is done using the Group Topic. By default, it is “BLEScanners”. If one desires to give the ‘MyBeacon’

name to the beacon with address ‘4f:9a:d1:63:7f:aa’ to all scanners then the topic would be

BLEScanners/cmnd/BeaconName with payload of 4f:9a:d1:63:7f:aa,MyBeacon. It could of also be done

with multiple commands with topics such as BLEScan/1/cmnd/BeaconName and

BLEScan/2/cmnd/BeaconName using the same payload in each.

Scanning seems to collect beacons that are either not real or at least not recognizable. Rather than

accumulating a bunch of these, the “BeaconDisable” topic can be used to ignore any additional beacons

from being added to the ESP32 memory. This would be done after all recognizable beacons have been

discovered.

To stop the reporting of a don’t-care beacon the “BeaconBlacklist” topic can be used. This will not free

up memory in the ESP32 for new beacons, but it will reduce the MQTT traffic.

To actually reclaim the memory the “BeaconRemove” topic is used. One payload option is to use ‘all’

and that will erase memory of all previously scanned beacons. It will also erase the names of these

beacons. Individual beacons can also be removed. After a beacon has been removed it is still possible

for it to announce itself and reclaim the memory if BeaconDisable has not been set.

Page 590

Figure 345 Beacons shown with good scanner separation

Page 591

Table 7 BLE Scanner Tasmota Commands

Command Description

ScannerLocation <id>,<X>,<Y>

Used to identify the position of the ESP32

performing the scan on a 100 x 100 grid. The <id>

is used to augment the topic to uniquely identify

the messages being published and commands

being given. This should be entered from console

because the <id> is part of the MQTT topic. On

initial load of ESP32 the <id> will default to 0 so

this command can be sent via MQTT such as below

to define id=2 at xy of 90,90

Topic: BLEScan/0/cmnd/ScannerLocation

Payload: 2,90,90

After sending it the ESP32 needs to be reset to

take on the topic definition

<id> is the index number of the ESP32 that

performs the scan. Numbers in range 1 to 10 are

supported

<X> is the integer position of the ESP32 on a 100

point line in range of 0 to 99

<Y> is the integer position of the ESP32 on a 100

point orthogonal line in range of 0 to 99

ScannerInterval <#>,<#>

Scanning is performed periodically with the period

specified by the first parameter. During this

period the ESP32 will be listening for beacons for

the duration of the second parameter. The

balance of time is used to do the analysis of the

beacon RRSi data and dedicate the antenna for

WiFi use.

<#> are integer number of seconds between the

start of each scan and the duration of each scan

respectively. Small values are problematic due to

both lack of beacons that will be discovered in a

short scan and the interactions that result in use of

ESP32 resources.

Most evaluation has been done with a 50%

duration, but significantly higher duty cycles

should be able to be achieved.

ScannerRetain <0|1>

MQTT protocol retain flag that can be applied to

the messages published by the ESP32 for

configuration of the scanner and of the beacons.

Retain flag is never used on the beacon location

reporting.

<0> turns off the retain flag

<1> turns on the retain flag

ScannerMaster <#>

The master scanner is considered to have the true

position of all beacons. All scanners will publish

the X, Y and Zone information computed by the

master scanner.

Normal operation is <0> to allow the ESP32’s to

<0> for auto-select

<1..10> for specific scanner

Page 592

determine the best scanner to serve the master

role. It will determine it as the scanner with the

lowest ID of those which are online.

ScannerGain <#>

The scanner gain accounts for the strength of the

receiver antenna as well as any receiver sensitivity

due to nearby obstructions.

A scanner with a higher gain antenna will result in

less negative RSSI readings and thus apparent

shorter distance to the beacon. To account for this

a gain of 110% will increase the distance measured

for every beacon by 10%

<#> is a percentage with a default value of 100 and

range of 0 to 255. No % suffix is used.

Higher gain values will increase calculated

distances to the beacons. Lower gain values will

make the beacons appear closer by reducing the

distance calculation.

BeaconTxPower <address>,<#1>,<#10>

RSSI reading at 1 meter and 10 meter between

beacon and scanner. Beacon TxPower establishes

the base power of each beacon and a second point

on the log curve that is used to calibrate the

beacon RSSI to distance transformation.

<#> is in range 10 to 150. Default 60,100.

It is separated from <address> with a comma

character.

Used in distance calculation:

Distance = 10^((P-RSSI)*C)

P = RSSI @ 1 meter

C = 1/(P-RSSI @ 10 meter)

BeaconName <address>,<name>

Each beacon will identify itself with a 17 character

<address> using MAC-notation. This< address> is

what is used by the ESP32 firmware to uniquely

identify a beacon. The <name> is the friendly

name used in the MQTT topics to identify the

beacon. A typical topic is of the form

“BLEScan/1/MyBeacon” where 1 is from the

ScannerLocation command and MyBeacon is

<name>.

<name> can be up to 17 characters. It is separated

from <address> with a comma character. The

<address> will be observed after scanning starts

and MQTT topics are published. Until a <name> is

assigned the topic will use the beacon address

with hyphen replacing the colon.

BeaconGroup <0/1> <0> Do not group

<1> Group all beacons that do not have a

manufacture code recognized in the MAC address

into single beacon with MAC address of

FF:FF:FF:FF:FF:FF

Smartphones typically randomize their BLE MAC

address to protect privacy. While it is not possible

Page 593

to distinguish smartphones when multiple are

present, it will be possible to detect if any

smartphone is present.

BeaconRssiError <#>

Kalman filter can be employed on the RSSI signal

from a beacon to remove jitter from the RSSI

reading.

<0> = do not use Kalman filter (default)

<1..50> = use Kalman filter with RSSI measurent
error of the specified value. A Kalman filter is used
to account for RSSI variation in measurement. A
larger number reflects greater variably in the
quality of the measurement. A value under 5 is
reasonable.

BeaconXYError <#>

Kalman filter can be employed on the triangulated

X and Y position calculations of a beacon to

remove jitter from the location reporting.

<0> = do not use Kalman filter and provide no

hysteresis on Zone report(default)

<1..50> to apply a Kalman filter with the entered

error. As beacons drop out from the scanner's

range the calculation will be affected by the

smaller sample size. Filtering this effect will

reduce variability in the(X, Y) location reporting.

It also used as the Zone window hysteresis. The

Zone is the single value reporting of the X & Y

parameters. A value under 10 is reasonable.

BeaconZone <#>

Amount of hysteresis that is allowed before a Zone

is changed. The Zone is the single value

representation of X and Y using expression

100*X+Y. The hysteresis is the change in either X

or Y that will change the reported Zone.

<#> range 1 to 50. Default 5

BeaconReportingMode <0|1|2>

Reporting mode of the beacon locations. The

lower the mode selected, the chattier the reports

will be.

<0> = report on every scan [1 minute] (Default)

<1> = report on change of X or Y

<2> = report on change of Zone

BeaconDropout <#>

Number of consecutive scans without detecting

beacon before last received RSSI is excluded from

beacon X/Y calculation

<#> range is 1 to 50, (default 3)

Smaller values will make quicker reporting of a

beacon that has gone out of range at the expense

of jitter in the location X,Y reporting.

Larger values will stabilize location reporting for a

non-moving beacon. Values above 2 are

reasonable.

Page 594

BeaconDisable <0/1>

<0> = add newly discovered beacons (default)

<1> = do not allow new beacons to be added

BeaconRemove <address> | <all> Erase memory of all discovered beacons or

memory of a single beacon

BeaconBlacklist <address>[,0] Mark a beacon for exclusion in reporting position.

This is different than BeaconRemove because if a

removed beacon is seen again then it will be

added back and continue being reported.

If a previously blacklisted beacon is to be added

back then the optional [,0] can be appended to the

command to indicate that it should no longer be

blacklisted.

The setup of beacon names is conveniently handled with Publist tab of mcsMQTT. The example in

Figure 346 shows two beacons being defined to each of the ESP32 scanners. Note that the group topic

“BLEScanners” is used to cover all the ESP32 doing the BLE scan function. The Tasmota command

GroupTopic is used (e.g. GroupTopic xyz from MQTT or Console) to change this group name.

In this publist I also included the filtering parameters so every ESP32 will be operating off of the same

criteria.

Page 595

Figure 346 Publist to define beacon friendly names

Other than acknowledgement of commands, there is a single published topic per beacon using JSON

encoding in the format shown below:

Topic: BLEScan/1/BlueCharm

Payload:

{"Scan":{"ScannerX":30,"ScannerY":60,"Address":"b0:91:22:f7:62:bf","RawRSSI":38,"FilteredRSSI":

38.48,"Present":1,”Master”:1},"Location":{“Distance:5,"BeaconFOM":3,"BeaconX":10,"BeaconY":90,"Zo

ne":1090}}

Topic: BLEScan/1/4a-63-b4-eb-d3-fa

Payload:{"ScannerX":30,"ScannerY":60,"Address":"4a:63:b4:eb:d3:fa","RawRSSI":90,"FilteredRSSI":

90.04,"Present":1,"BeaconFOM":1,"BeaconX":30,"BeaconY":60,"Zone":3060}

Payload Key Description

Scan:ScannerX X axis position of reporting scanner. Each scanner

will report slightly different values based upon

variance in timing, but if filtered will tend to

converge over time.

Scan:ScannerY Y axis position of reporting scanner. Each scanner

will report slightly different values based upon

variance in timing, but if filtered will tend to

Page 596

converge over time.

Scan:Address Beacon address

Scan:RawRSSI Last RSSI seen by ESP32 for this beacon

Scan:FilteredRSSI RSSI after filtering

Scan:Present 1 = detected in at least one of the recent scans.

BeaconDropout sets the magnitude of number of

scans that are considered recent

0 = not detected in most recent scans

Location:Scanner Identification of the scanner that was selected to

be the one as the master. Masters are selected

based upon having the lowest scanner ID for those

scanners that are online based upon LWT status.

When a new master is selected it will initialize the

X and Y coordinates of every beacon to the

coordinates last reported by the previous master.

Location:Distance Distance in feet calculated based upon RSSI and

calibration measurements at 1 and 10 meters.

Distance will be set to -1 if reporting scanner no

longer has the beacon in range

Location:BeaconFOM Figure Of Merit which is the count of the number

of scanners that see beacon in its scan. It is

affected by the BeaconDropout filter. When it

goes to zero the reported beacon measurements

are set to -1 to indicate that the X , Y and Zone

values are no longer valid.

Location:BeaconX Calculated X coordinate based upon calculated

distance. It is affected by the filters being

employed. It is set to -1 when no scanner has the

beacon in range.

Location:BeaconY Calculated Y coordinate based upon calculated

distance. It is affected by the filters being

employed. It is set to -1 when no scanner has the

beacon in range.

Location:Zone Location as represented as X*100+Y. Zone will

remain constant until X or Y exceeds BeaconZone

hysteresis. This is intended to be used as a stable

singe-value marker when determining if a beacon

has changed locations. It is set to -1 when no

Page 597

scanner has the beacon in range.

Page 598

20.16.6 BLE on Raspberry Pi

There are two configurations for BLE support on Linux. One is associated with the HS3 mcsMQTT plugin

and uses the the same API developed for the ESP32. This implementation provides for position isolation

using multiple scanners to triangulate. The second is associated with the HS4 mcsMQTT plugin. It is a

simplified version that provides presence detection.

The RPi 3/4 has a built-in Bluetooth capability. Other devices with a Bluetooth dongle should also work

in a similar manner, but these have not been attempted.

The RPi has an advantage over ESP32 in that it does not share hardware resources between WiFi and

Bluetooth. This allows for scan intervals that are not limited by the hardware, but only by the Bluetooth

specification for response time to the advertise packet. Continuous one-second scan can be achieved,

but more practical timing is likely more appropriate to conserve beacon battery and RPi computational

resources.

Scan interval and duration can be as short at one second. Limits are 1 to 1000 seconds for both. This

effectively provides continuous scanning. The ESP32 is not able to achieve these fast rates due to

sharing of 2.4GHz antenna for both Wifi and Bluetooth. Minimum five-second intervals are enforced on

the ESP32.

Settings are stored in file BLEScan.ini on the RPi rather than in flash used for ESP32. Settings are the

same as for ESP32 as shown in Table 7 with the addition of those in Table 8. The keys in BLEScan.ini are

all upper case.

20.16.6.1 Installation and Setup on RPi

The source and object code for HS3 version are at http://mcsSprinklers.com/BLEMQTT.zip . The source

and object for the HS4 version are in the Updater zip files associated with each version.

One file is needed called BLEMQTT. It can run from any folder on the RPi. This description assumes it is

placed at /usr/local/BLEMQTT for HS3 version and will be in a HomeSeer subfolder \bin\mcsMQTT.

BLEMQTT should be made executable from command line with one of the two following or other

methods such as with WINSCP properties.

 chmod +x usr/local/BLEMQTT/BLEMQTT (HS3)

chmod +x usr/local/HomeSeer/bin/mcsMQTT/BLEMQTT (HS4)

Additional libraries will likely need to be installed is there are errors when starting BLEMQTT. In

particular the ones shown in gray boxes of Section 20.16.6.2 will be needed.

The RPi application is BLEMQTT for HS3 that can be run from the command line or as a service under

systemctl. For HS4, mcsMQTT manages the execution of BLEMQTT. Testing was done using DietPi

(Debian Stretch & Buster), Raspian (Debian Buster), but any OS compatible with the RPi-3 or RPI-4

should provide the same result.

For HS4 the BLEMQTT is a stripped-down version that does not use .ini support. Two versions are

available with the only difference being the level of detail that is written to the file BLEMQTT.Trace.

BLEMQTT_TRACE contains additional detail.

http://mcssprinklers.com/BLEMQTT.zip

Page 599

The HS4 version is started from the command line from the BLEMQTT folder as:

sudo ./BLEMQTT brokerIp brokerusername brokerpassword

If no brokerusername or brokerpassword is provided then the connection is attempted without login

credentials.

If there are errors reported about libraries not already installed then look at the next section for getting

these libraries.

The BLEMQTT.service file that is located in /etc/systemd/system contains:

[Unit]
Description=BLE Beacon tracking via MQTT
After=network.target

[Service]
ExecStart=/usr/local/BLEMQTT/autostart_BLEMQTT
Restart=on-failure
TimeoutStopSec=90

[Install]
WantedBy=multi-user.target

With BLEMQTT installed in /usr/local/BLEMQTT the autostart_BLEMQTT fie contains:

#!/bin/sh
export LANG=en_US.UTF-8
cd usr/local/BLEMQTT
sleep 10s
/usr/local/BLEMQTT/BLEMQTT

 autostart_BLEMQTT and BLEMQTT need to be executable (e.g. chmod +x

usr/local/BLEMQTT/BLEMQTT). The service also needs to be enabled with command line “systemctl

enable BLEMQTT.service”. Manual stop, start and status can be done with “systemctl stop

BLEMQTT.service”, “systemctl start BLEMQTT.service” and “systemctl status BLEMQTT.service”

respectively.

Before enabling the autostartup it is best to run manually from the command prompt (cd

/usr/local/BLEMQTT followed by sudo ./BLEMQTT localhost). This will provide feedback in the console

to confirm things are working as expected. It can be manually stopped from the command line using

Ctl-C which will be recognized by BLEMQTT as an exit signal.

The HS3 version initial start will create the BLEMQTT.ini file as the BLEMQTT which then can be edited to

setup the configuration. The only items that need to be done manually are the SCANNERID to be a

unique number between 1 and 10 where 1 is best for the first scanner on the network. The MQTT

parameters should also be defined so mcsMQTT interface is established. MQTTBROKER, MQTTTOPIC,

MQTTGROUP and MQTTPERIOD should be set. An example is:

[BEACON]
42:00:07:B2:C6:C7=60,60,60,60,60
B0:91:22:F7:62:BF=BlueCharm,60,100,0,0
DC:0D:30:47:02:09=Feasycom,60,100,0,0
45:00:E7:41:9B:60=60,60,60,60,60
[CONFIG]

Page 600

SCANNERID=1
SCANNERGAIN=100
SCANNERX=30,30,20,0,0,0,0,0,0,0
SCANNERY=3,25,30,0,0,0,0,0,0,0
BEACONSCANDURATION=2
BEACONRSSIERROR=2
BEACONXYERROR=0
BEACONDISABLE=1
BEACONDROPOUT=4
BEACONZONE=5
BEACONREPORTINGMODE=0
BEACONSCANINTERVAL=5
BEACONRETAIN=0
BEACONMASTER=0
MQTTBROKER=tcp://localhost:1883
MQTTTOPIC=BLEScan
MQTTGROUP=BLEScanners
MQTTPERIOD=60

The other parameters are most easily setup from mcsMQTT BLE page, but they can also be done by

direct edit of BLEMQTT.ini. The API for these is defined in Table 7 with the RPI-specific extensions in

Table 8. For HS4 version there is no need for any user action with the API.

Page 601

Table 8 BLE Scanner RPi Tasmota Command Extension

Command Description

MQTTBROKER <address>

MQTT Broker address.

While it is not possible to deliver this setting via

MQTT it should be done by manual edit of

BLEScan.ini. This is a bootstrapping issue.

<address> is in the form "tcp://localhost:1883"

where localhost is the network name or IP address

and 1883 is the port .

Default is "tcp://localhost:1883"

MQTTTOPIC <topic>

Base topic for MQTT publication and subscription

Actual topic used in MQTT messages will have

appended the Id of the scanner as well as the

command

<topic> is the base topic for the scanner.

Default is “BLEScan”

MQTTGROUP <topic>

Group topic for MQTT publication that will be

recognized by all scanners

<topic> is the base topic for the group of scanners.

Default is “BLEScanners”

MQTTPERIOD <#>

Define the telemetry period for scanner and

beacon state information

<#> is a number of seconds.

Default is 300. Limits are 1 and 1000.

MQTTEXIT <#>

Action to be taken when broker disconnects. It

can be internal attempt to reconnect or systemctl

to restart BLEMQTT to reconnect

<#> = 0 if broker disconnect uses internal auto

reconnect method. The MQTT library does not

appear to reconnect automatically (or produce

disconnect callbacks)

<#> = 1 if disconnect causes BLEMQTT to exit and

allows systemctl to restart BLEMQTT to establish

new broker connection

MQTTLOG <#>

Log file is BLEMQTT.trace. The detail of

information going to the log is controlled by this

parameter.

<#> = integer to represent the level of detail in the

log file. The options are:

 TRACE_MAXIMUM 1
 TRACE_MEDIUM 2
 TRACE_MINIMUM 3
 TRACE_PROTOCOL 4
 LOG_ERROR 5
 LOG_SEVERE 6
 LOG_FATAL 7

The lower numbers produce more detail in the log

Page 602

20.16.6.2 Installing dependencies and Compiling from Source

Three source libraries are used. One for Bluetooth, one for MQTT, one for Ini in the HS3 version and

then the main BLESCAN.c program. MQTT requires the openssl library which may or may not already be

installed on the Linux distribution.

The steps in the following three grayed boxes are needed unless the dependent libraries are alredy

installed.

openssl is installed with:

sudo apt-get install libssl-dev

MQTT is obtained from https://www.eclipse.org/paho/clients/c/. Any folder can be used when cloning

the source. The actual file being used is libpaho-mqtt3a.so. The build instructions are contained on the

reference page which are:

sudo apt-get install git

sudo git clone https://github.com/eclipse/paho.mqtt.c.git

cd paho.mqtt.c

sudo make

sudo make install

The async library is the one that was implemented and its object was created as
/usr/local/lib/libpaho-mqtt3a.so

The bluetooth library is obtained using apt-get from command line:

sudo apt-get install libbluetooth-dev

The main program BLEMQTT.c is available at http://mcsSprinklers.com/BLEMQTT.zip for HS3 or
Updater package for HS4. For HS4 two binary executable are produced. BLEMQTT_TRACE contains a log
of the beacons detected in the created BLEMQTT.Trace file. This can be run to confirm beacons are
being detected. Normally BLEMQTT is run with the created file only containing execution errors.

If one desires to build the BLEMQTT executable from source the following line is used after navigating to
the folder where BLEMQTT.c was placed.

sudo gcc BLEMQTT.c -lbluetooth -lm ini.o /usr/local/lib/libpaho-mqtt3a.so -o

BLEMQTT

A dependent libarary that may be required is installed with:

sudo apt-get install libncurses5-dev libncursesw5-dev

Ini is only used for the BLEMQTT that performs translateration with support in HS3 mcsMQTT. It is not
used for the HS4 implementaion. Ini was obtained from https://github.com/benhoyt/inih. The required
file ini.o is in BLEMQTT.zip and placed in the same /usr/local/BLEMQTT/ folder. Minor modification was
made and the modified source ini.c/ini.h is included in the same zip as BLEMQTT.c described later. The
files were copied to RPi from the Windows download into the BLEMQTT folder. The ini.o library was

https://www.eclipse.org/paho/clients/c/
http://mcssprinklers.com/BLEMQTT.zip
https://github.com/benhoyt/inih

Page 603

created from RPi command line gcc -c -fPIC ini.c -o ini.o after navigating to BLEMQTT
folder with “cd /usr/local/BLEMQTT”.

20.16.6.3 Filtering

For H4 a Low Pass filter was used. For HS3, filtering was evaluated for Kalman and LowPass filters.

Results were similar with the LowPass having greater user control of the filter response and a more

intuitive cause-effect relationship of filter constant and the response. Figure 347 shows the Low Pass

filter with time constants (RSSIError) of 1 and 10 and a steady vs. moving beacon. This data shows there

is random noise about a measurement as well as a periodic sawtooth of about two seconds. Figure 348

shows the evaluation using an RSSIError value of 20. The heavier filtering provides a stable steady state

RSSI and about 3 minute response time to a beacon that moved 20 ft. Another observation is that there

is a greater fluctuation in RSSI for beacons at a larger distance than at a shorter distance.

If the raw RSSI is stable then a low filter time constant will give the best results. If there is more need for

position stability and response time is not critical then higher values will work better. The limits are 1

and 50.

Figure 347 Low Pass Filter Evaluation

RSSI Error @ 1, change of

20 ft in beacon

RSSI Error @ 10

RSSI Error @ 10, change of

20 ft in beacon

Page 604

Figure 348 Low Pass Filter Response with RSSIError 20

RSSI Error @ 20, change of

20 ft in beacon

Page 605

20.16.7 Prototype

The ESP32 contains a Bluetooth capability that in this project is used to scan the available devices. The

project is based upon the work done in https://www.instructables.com/id/Nano-ESP32-BLE-Scanner/.

Reference was also made of the YouTube video by Andreas Spiess at

https://www.youtube.com/watch?v=k_D_Qu0cgu8 for making use of the two cores of the ESP32.

One core is used to perform the Bluetooth scan. The other core is used to manage WiFi/MQTT and

evaluate the results of the Bluetooth scan. The scan is a 30 second activity and repeated at

approximately 60 second intervals. Semaphore is used to coordinate the scan and the reporting of the

scan results.

The report consists of two payload formats. The first reports a payload of Inactive or Active for the topic

that is specified as BLEscan/address where address is the device Bluetooth address with colons replaced

by hyphens. The second is BLEscan/address/INFO with JSON payload of everything reported during the

scan. The JSON keys will consist of one or more the following: Address, Name, Appearance,

ManufacturerData, ServiceUUID and TxPower.

The log below shows three hours of reporting where device is detected, no longer detected and then

detected again. The actual devices are unknown and no activity was performed to intentionally enable

of disable a Bluetooth-capable device.

When an Android smartphone or an Amazon Echo were powered-off and powered-on there was no

specific correlation with the Bluetooth scan. Until a better understanding of what the scan is actually

doing and device dependencies are recognized then an application of the BLE scanner will not be

possible.

In any case is still provides a basis for further work using ESP32 where the technology of Bluetooth scan,

MQTT and use of multiple cores is demonstrated.

The sketch is provided at the end of this section. Setup of Arduino IDE for ESP32 is available several

places including https://www.youtube.com/watch?v=DgaKlh081tU. This sketch compiles to 1.5Mbyte

and SPDIFF is not used. Most ESP32 development boards have 4 Mbyte. This means that it will fit in a

generic development board and still have OTA capability after initially flashed. This option is setup

under Tools/Partition Scheme in the Arduino IDE.

https://www.instructables.com/id/Nano-ESP32-BLE-Scanner/
https://www.youtube.com/watch?v=k_D_Qu0cgu8
https://www.youtube.com/watch?v=DgaKlh081tU

Page 606

3:20:20 PM Received BLEscan/5d-49-bc-fb-08-f9={"Address":"5d:49:bc:fb:08:f9","RSSI":-63,"ManufacturerData":"4c001005171cf14dc3"}

3:22:20 PM Received BLEscan/53-c6-e0-13-ee-23=Active
3:22:21 PM Received BLEscan/5f-4a-35-96-16-7a=Active
3:22:21 PM Received BLEscan/5f-4a-35-96-16-7a/INFO ={"Address":"5f:4a:35:96:16:7a","RSSI":-58,"ManufacturerData":"4c001005171c725483"}
3:23:21 PM Received BLEscan/4e-7c-03-13-bd-1c=Inactive
3:23:21 PM Received BLEscan/5d-49-bc-fb-08-f9=Inactive
3:26:21 PM Received BLEscan/4d-c0-97-28-68-3b=Active
3:26:21 PM Received BLEscan/4d-c0-97-28-68-3b/INFO ={"Address":"4d:c0:97:28:68:3b","RSSI":-96,"ManufacturerData":"4c0010050b1c62c94b"}
3:27:21 PM Received BLEscan/4d-c0-97-28-68-3b=Inactive
3:30:20 PM Received BLEscan/53-c6-e0-13-ee-23/INFO ={"Address":"53:c6:e0:13:ee:23","RSSI":-89,"ManufacturerData":"4c0010050318c75348"}
3:30:21 PM Received BLEscan/5f-4a-35-96-16-7a/INFO ={"Address":"5f:4a:35:96:16:7a","RSSI":-63,"ManufacturerData":"4c001005171c725483"}
3:37:21 PM Received BLEscan/52-a5-7d-88-19-74=Active
3:37:21 PM Received BLEscan/52-a5-7d-88-19-74/INFO ={"Address":"52:a5:7d:88:19:74","RSSI":-71,"ManufacturerData":"4c001005171cb30b17"}
3:38:21 PM Received BLEscan/5f-4a-35-96-16-7a=Inactive
3:40:21 PM Received BLEscan/52-a5-7d-88-19-74/INFO ={"Address":"52:a5:7d:88:19:74","RSSI":-61,"ManufacturerData":"4c001005171cb30b17"}
3:40:21 PM Received BLEscan/53-c6-e0-13-ee-23/INFO ={"Address":"53:c6:e0:13:ee:23","RSSI":-78,"ManufacturerData":"4c0010050318c75348"}
3:50:21 PM Received BLEscan/52-a5-7d-88-19-74/INFO ={"Address":"52:a5:7d:88:19:74","RSSI":-69,"ManufacturerData":"4c001005171cb30b17"}
3:50:22 PM Received BLEscan/53-c6-e0-13-ee-23/INFO ={"Address":"53:c6:e0:13:ee:23","RSSI":-71,"ManufacturerData":"4c0010050318c75348"}
3:52:20 PM Received BLEscan/56-fe-df-19-84-53=Active
3:52:21 PM Received BLEscan/56-fe-df-19-84-53/INFO ={"Address":"56:fe:df:19:84:53","RSSI":-69,"ManufacturerData":"4c001005171cb30b17"}
3:53:21 PM Received BLEscan/52-a5-7d-88-19-74=Inactive
4:00:21 PM Received BLEscan/53-c6-e0-13-ee-23/INFO ={"Address":"53:c6:e0:13:ee:23","RSSI":-77,"ManufacturerData":"4c0010050318c75348"}
4:00:22 PM Received BLEscan/56-fe-df-19-84-53/INFO ={"Address":"56:fe:df:19:84:53","RSSI":-61,"ManufacturerData":"4c001005171c7435a5"}
4:07:21 PM Received BLEscan/58-71-b0-72-bb-f8=Active
4:07:21 PM Received BLEscan/58-71-b0-72-bb-f8/INFO ={"Address":"58:71:b0:72:bb:f8","RSSI":-69,"ManufacturerData":"4c001005171c0b7e34"}
4:08:21 PM Received BLEscan/56-fe-df-19-84-53=Inactive
4:10:21 PM Received BLEscan/53-c6-e0-13-ee-23/INFO ={"Address":"53:c6:e0:13:ee:23","RSSI":-71,"ManufacturerData":"4c0010050318c75348"}
4:10:21 PM Received BLEscan/58-71-b0-72-bb-f8/INFO ={"Address":"58:71:b0:72:bb:f8","RSSI":-61,"ManufacturerData":"4c001005171c0b7e34"}
4:20:21 PM Received BLEscan/53-c6-e0-13-ee-23/INFO ={"Address":"53:c6:e0:13:ee:23","RSSI":-77,"ManufacturerData":"4c0010050318c75348"}
4:20:21 PM Received BLEscan/58-71-b0-72-bb-f8/INFO ={"Address":"58:71:b0:72:bb:f8","RSSI":-61,"ManufacturerData":"4c001005171c0b7e34"}
4:22:23 PM Received BLEscan/75-8f-e5-87-41-7b=Active
4:22:23 PM Received BLEscan/75-8f-e5-87-41-7b/INFO ={"Address":"75:8f:e5:87:41:7b","RSSI":-61,"ManufacturerData":"4c001005171c0b7e34"}
4:23:21 PM Received BLEscan/58-71-b0-72-bb-f8=Inactive
4:30:22 PM Received BLEscan/53-c6-e0-13-ee-23/INFO ={"Address":"53:c6:e0:13:ee:23","RSSI":-77,"ManufacturerData":"4c0010050318c75348"}
4:30:22 PM Received BLEscan/75-8f-e5-87-41-7b/INFO ={"Address":"75:8f:e5:87:41:7b","RSSI":-69,"ManufacturerData":"4c001005171cfe6dcb"}
4:37:21 PM Received BLEscan/6f-e5-82-e4-f1-12=Active

Page 607

4:37:21 PM Received BLEscan/6f-e5-82-e4-f1-12/INFO ={"Address":"6f:e5:82:e4:f1:12","RSSI":-62,"ManufacturerData":"4c001005171c516cfa"}
4:38:21 PM Received BLEscan/75-8f-e5-87-41-7b=Inactive
4:40:21 PM Received BLEscan/53-c6-e0-13-ee-23/INFO ={"Address":"53:c6:e0:13:ee:23","RSSI":-70,"ManufacturerData":"4c0010050318c75348"}
4:40:22 PM Received BLEscan/6f-e5-82-e4-f1-12/INFO ={"Address":"6f:e5:82:e4:f1:12","RSSI":-61,"ManufacturerData":"4c001005171c516cfa"}
4:50:22 PM Received BLEscan/53-c6-e0-13-ee-23/INFO ={"Address":"53:c6:e0:13:ee:23","RSSI":-71,"ManufacturerData":"4c0010050318c75348"}
4:50:22 PM Received BLEscan/6f-e5-82-e4-f1-12/INFO ={"Address":"6f:e5:82:e4:f1:12","RSSI":-61,"ManufacturerData":"4c001005171c516cfa"}
4:52:21 PM Received BLEscan/40-19-dc-53-26-0c=Active
4:52:21 PM Received BLEscan/40-19-dc-53-26-0c/INFO ={"Address":"40:19:dc:53:26:0c","RSSI":-62,"ManufacturerData":"4c001005171ce12d8f"}
4:53:21 PM Received BLEscan/6f-e5-82-e4-f1-12=Inactive
5:00:23 PM Received BLEscan/40-19-dc-53-26-0c/INFO ={"Address":"40:19:dc:53:26:0c","RSSI":-70,"ManufacturerData":"4c001005171ce12d8f"}
5:00:23 PM Received BLEscan/53-c6-e0-13-ee-23/INFO ={"Address":"53:c6:e0:13:ee:23","RSSI":-70,"ManufacturerData":"4c0010050318c75348"}
5:07:22 PM Received BLEscan/53-9d-f9-14-4f-aa=Active
5:07:22 PM Received BLEscan/53-9d-f9-14-4f-aa/INFO ={"Address":"53:9d:f9:14:4f:aa","RSSI":-62,"ManufacturerData":"4c001005171ccc1b74"}
5:08:22 PM Received BLEscan/40-19-dc-53-26-0c=Inactive
5:10:22 PM Received BLEscan/53-9d-f9-14-4f-aa/INFO ={"Address":"53:9d:f9:14:4f:aa","RSSI":-69,"ManufacturerData":"4c001005171ccc1b74"}
5:10:22 PM Received BLEscan/53-c6-e0-13-ee-23/INFO ={"Address":"53:c6:e0:13:ee:23","RSSI":-71,"ManufacturerData":"4c0010050318c75348"}
5:20:22 PM Received BLEscan/53-9d-f9-14-4f-aa/INFO ={"Address":"53:9d:f9:14:4f:aa","RSSI":-69,"ManufacturerData":"4c001005171ccc1b74"}
5:20:22 PM Received BLEscan/53-c6-e0-13-ee-23/INFO ={"Address":"53:c6:e0:13:ee:23","RSSI":-70,"ManufacturerData":"4c0010050318c75348"}
5:22:22 PM Received BLEscan/67-e1-bd-c2-3d-33=Active
5:22:22 PM Received BLEscan/67-e1-bd-c2-3d-33/INFO ={"Address":"67:e1:bd:c2:3d:33","RSSI":-61,"ManufacturerData":"4c001005171cae1a3b"}
5:23:21 PM Received BLEscan/53-9d-f9-14-4f-aa=Inactive
5:30:21 PM Received BLEscan/53-c6-e0-13-ee-23/INFO ={"Address":"53:c6:e0:13:ee:23","RSSI":-70,"ManufacturerData":"4c0010050318c75348"}
5:30:22 PM Received BLEscan/67-e1-bd-c2-3d-33/INFO ={"Address":"67:e1:bd:c2:3d:33","RSSI":-61,"ManufacturerData":"4c001005171cae1a3b"}
5:37:22 PM Received BLEscan/4b-70-9d-4d-e9-5f=Active
5:37:22 PM Received BLEscan/4b-70-9d-4d-e9-5f/INFO ={"Address":"4b:70:9d:4d:e9:5f","RSSI":-62,"ManufacturerData":"4c001005171c97560c"}
5:38:21 PM Received BLEscan/67-e1-bd-c2-3d-33=Inactive
5:40:23 PM Received BLEscan/4b-70-9d-4d-e9-5f/INFO ={"Address":"4b:70:9d:4d:e9:5f","RSSI":-61,"ManufacturerData":"4c001005171c97560c"}
5:40:23 PM Received BLEscan/53-c6-e0-13-ee-23/INFO ={"Address":"53:c6:e0:13:ee:23","RSSI":-77,"ManufacturerData":"4c0010050318c75348"}
5:50:21 PM Received BLEscan/4b-70-9d-4d-e9-5f/INFO ={"Address":"4b:70:9d:4d:e9:5f","RSSI":-61,"ManufacturerData":"4c001005171c97560c"}
5:50:21 PM Received BLEscan/53-c6-e0-13-ee-23/INFO ={"Address":"53:c6:e0:13:ee:23","RSSI":-71,"ManufacturerData":"4c0010050318c75348"}
5:52:23 PM Received BLEscan/52-e0-87-14-a3-41=Active
5:52:24 PM Received BLEscan/52-e0-87-14-a3-41/INFO ={"Address":"52:e0:87:14:a3:41","RSSI":-69,"ManufacturerData":"4c001005171c21e7b7"}
5:53:21 PM Received BLEscan/4b-70-9d-4d-e9-5f=Inactive
6:00:21 PM Received BLEscan/52-e0-87-14-a3-41/INFO ={"Address":"52:e0:87:14:a3:41","RSSI":-68,"ManufacturerData":"4c001005171c21e7b7"}
6:00:21 PM Received BLEscan/53-c6-e0-13-ee-23/INFO ={"Address":"53:c6:e0:13:ee:23","RSSI":-70,"ManufacturerData":"4c0010050318c75348"}
6:00:21 PM Received BLEscan/40-16-3b-f0-70-df=Inactive
6:07:22 PM Received BLEscan/58-30-63-9c-aa-6f=Active
6:07:22 PM Received BLEscan/58-30-63-9c-aa-6f/INFO ={"Address":"58:30:63:9c:aa:6f","RSSI":-64,"ManufacturerData":"4c001005171cf2d5dc"}

Page 608

6:08:22 PM Received BLEscan/52-e0-87-14-a3-41=Inactive
6:10:22 PM Received BLEscan/53-c6-e0-13-ee-23/INFO ={"Address":"53:c6:e0:13:ee:23","RSSI":-82,"ManufacturerData":"4c0010050318c75348"}
6:10:22 PM Received BLEscan/58-30-63-9c-aa-6f/INFO ={"Address":"58:30:63:9c:aa:6f","RSSI":-67,"ManufacturerData":"4c001005171cf2d5dc"}
6:20:22 PM Received BLEscan/53-c6-e0-13-ee-23/INFO ={"Address":"53:c6:e0:13:ee:23","RSSI":-74,"ManufacturerData":"4c0010050318c75348"}
6:20:22 PM Received BLEscan/58-30-63-9c-aa-6f/INFO ={"Address":"58:30:63:9c:aa:6f","RSSI":-62,"ManufacturerData":"4c001005171cf2d5dc"}
6:22:22 PM Received BLEscan/60-be-49-b5-9a-79=Active
6:22:22 PM Received BLEscan/60-be-49-b5-9a-79/INFO ={"Address":"60:be:49:b5:9a:79","RSSI":-65,"ManufacturerData":"4c001005171c56b008"}
6:23:22 PM Received BLEscan/58-30-63-9c-aa-6f=Inactive
6:30:22 PM Received BLEscan/53-c6-e0-13-ee-23/INFO ={"Address":"53:c6:e0:13:ee:23","RSSI":-83,"ManufacturerData":"4c0010050318c75348"}
6:30:22 PM Received BLEscan/60-be-49-b5-9a-79/INFO ={"Address":"60:be:49:b5:9a:79","RSSI":-62,"ManufacturerData":"4c001005171c56b008"}

Page 609

/*

 Based on Neil Kolban example for IDF: https://github.com/nkolban/esp32-

snippets/blob/master/cpp_utils/tests/BLE%20Tests/SampleScan.cpp

 Ported to Arduino ESP32 by Evandro Copercini

*/

const char* ssid="Yours";

const char* password="Yours";

const char* broker="192.168.0.3";

const char* outTopic="BLEscan/3/";

const long RESCAN_TIME = 60000; //milliseconds polling interval

#define SCAN_TIME 30 // seconds

#define STATUS_TIME 10 // polling loops per status report

// comment the follow line to disable serial message

#define SERIAL_PRINT

#include <Arduino.h>

// for BLE

#include <BLEDevice.h>

#include <BLEUtils.h>

#include <BLEScan.h>

#include <BLEAdvertisedDevice.h>

// for MQTT over WiFi

#include <WiFi.h>

#include <PubSubClient.h>

// for multiple core usage

TaskHandle_t BLEtask, WiFiTask;

SemaphoreHandle_t scanDone;

// data shared by two cores

BLEScanResults foundDevices; // passed from BLE to WiFi

bool newScan = false; // assure only one wifi loop per scan

// data for Wifi/MQTT/Reporting

WiFiClient espClient;

PubSubClient client(espClient);

int deviceIndex = 0; // pointer into deviceList

char deviceList[50][18]; //list of discovered addresses

int deviceRSSI[50]; //list of RSSI of each address

bool deviceFound[50]; // marker for each pass to know if a device has left

Page 610

bool deviceInactive[50]; // flag to indicate that a device inactive has been reported

bool statusReport = false; // flag when to produce periodic JSON status of connected devices

long lastTime = 0;

int statusCount = 0;

int count = 0;

#ifdef SERIAL_PRINT

bool bBLEcoreReported = false;

bool bWiFiCoreReported = false;

#endif

void setup()

{

#ifdef SERIAL_PRINT

 Serial.begin(115200);

 Serial.println("ESP32 BLE Scanner");

#endif

 BLEDevice::init("");

 setupWiFi();

 client.setServer(broker,1883);

 // init arrays used to remember BLE devices observed

 for (int i = 0; i < 50; i++) {

 deviceInactive[i] = false;

 deviceFound[i] = false;

 deviceList[i][17]= '\0';

 }

 // mutex so reporting waits for scan to be done

 scanDone = xSemaphoreCreateMutex();

 // define the two tasks

 xTaskCreatePinnedToCore(

 &codeForBLE,

 "BLE", // task name

 10000, // stack size

 NULL, // parameter

 1, // priority

 &BLEtask, // handle

 0); // core

 delay(10000); // start-up BLE. It will grab mutex

Page 611

 xTaskCreatePinnedToCore(

 &codeForWiFi,

 "WiFi", // task name

 10000, // stack size

 NULL, // parameter

 1, // priority

 &WiFiTask, // handle

 1); // core

}

///////////// BLE //

void codeForBLE(void * parameter) {

 for(;;) {

#ifdef SERIAL_PRINT

 if (!bBLEcoreReported) {

 Serial.print("BLE running on Core ");

 Serial.println(xPortGetCoreID());

 bBLEcoreReported = true;

 }

#endif

 //grab mutex when it becomes available

 xSemaphoreTake(scanDone,portMAX_DELAY);

#ifdef SERIAL_PRINT

 Serial.println("BLE start");

#endif

 // scan Bluetooth devices

 Scan();

 newScan = true;

 // release mutex

 xSemaphoreGive(scanDone);

#ifdef SERIAL_PRINT

 Serial.println("BLE done");

#endif

 delay(SCAN_TIME*1000);

 }

}

class MyAdvertisedDeviceCallbacks : public BLEAdvertisedDeviceCallbacks

{

 void onResult(BLEAdvertisedDevice advertisedDevice)

Page 612

 {

#ifdef SERIAL_PRINT

 Serial.printf("Advertised Device: %s \n", advertisedDevice.toString().c_str());

#endif

 }

};

void Scan() {

 BLEScan *pBLEScan = BLEDevice::getScan(); //create new scan

 pBLEScan->setAdvertisedDeviceCallbacks(new MyAdvertisedDeviceCallbacks());

 pBLEScan->setActiveScan(true); //active scan uses more power, but get results faster

 pBLEScan->setInterval(0x50);

 pBLEScan->setWindow(0x30);

#ifdef SERIAL_PRINT

 Serial.printf("Start BLE scan for %d seconds...\n", SCAN_TIME);

#endif

 //look for devices and pass list of found devices to wifi/reporting task

 foundDevices = pBLEScan->start(SCAN_TIME);

}

///////////// WIFI //

void codeForWiFi(void * parameter) {

 for(;;) {

#ifdef SERIAL_PRINT

 if (!bWiFiCoreReported) {

 Serial.print("WiFi running on Core ");

 Serial.println(xPortGetCoreID());

 bWiFiCoreReported = true;

 }

#endif

 xSemaphoreTake(scanDone,portMAX_DELAY);

#ifdef SERIAL_PRINT

 Serial.println("WiFi start");

#endif

 loopWiFi();

 newScan = false;

 xSemaphoreGive(scanDone);

#ifdef SERIAL_PRINT

 Serial.println("WiFi done");

Page 613

#endif

 //keep polling around 60 second interval

 long currentTime = millis();

 long deltaTime = RESCAN_TIME - (currentTime - lastTime);

 lastTime = currentTime;

 if (deltaTime > 0) {

 delay(deltaTime);

 }

 else {

 delay(100);

 }

 // don’t do eval unless new scan done

 while (!newScan) {

 delay(1000);

 }

 }

}

void setupWiFi(){

 delay(100);

 WiFi.begin(ssid,password);

 while(WiFi.status() != WL_CONNECTED){

 delay(100);

#ifdef SERIAL_PRINT

 Serial.print(".");

#endif

 }

#ifdef SERIAL_PRINT

 Serial.print("\nConnected to SSID ");

 Serial.println(ssid);

#endif

}

void reconnect(){

 while(!client.connected()){

 if(client.connect("BLEscan","","")){

#ifdef SERIAL_PRINT

 Serial.print("\nConnected to Broker ");

 Serial.println(broker);

#endif

 } else {

#ifdef SERIAL_PRINT

 Serial.print("\nTrying again to Broker ");

 Serial.println(broker);

Page 614

#endif

 delay(5000);

 }

 }

}

// Assess if any new devices found and confirm existing devices still exist

void EvaluateActive() {

 count = foundDevices.getCount();

#ifdef SERIAL_PRINT

 Serial.print("EvaluateActive ");

 Serial.println(count);

#endif

 for (int i = 0; i < count; i++) {

 BLEAdvertisedDevice d = foundDevices.getDevice(i);

 std::string sAdd = d.getAddress().toString();

 char addr[18];

 char sTopic[40];

 char source[18];

 std::copy(sAdd.begin(), sAdd.end(), addr);

 addr[17] = '\0';

 strcpy(source,addr);

 addr[2]='-';

 addr[5]='-';

 addr[8]='-';

 addr[11]='-';

 addr[14]='-';

 bool bFound = false;

 bool bInActive = false;

 int Zone = -d.getRSSI()/5;

 int foundIndex;

 bool bMoved = false;

 for (int j = 0; j < deviceIndex; j++) {

 if(strcmp(deviceList[j], source) == 0) {

 bFound = true;

 foundIndex = j;

 deviceFound[j] = true;

 bInActive = deviceInactive[j];

 deviceInactive[j] = false;

 int RSSI = deviceRSSI[j];

 deviceRSSI[j]= d.getRSSI();

 bMoved = (abs(RSSI - deviceRSSI[j])> 10);

 break;

Page 615

 }

 }

 if (!bFound || bInActive || bMoved) {

 if (!bFound){

 strcpy(deviceList[deviceIndex],source);

 deviceRSSI[deviceIndex] = d.getRSSI();

 deviceFound[deviceIndex] = true;

 deviceInactive[deviceIndex] = false;

 foundIndex = deviceIndex;

 deviceIndex++;

 }

 snprintf(sTopic,40,"%s%s",outTopic,addr);

#ifdef SERIAL_PRINT

 Serial.print(foundIndex);

 Serial.print(" Publish ");

 Serial.print(sTopic);

 Serial.print("=");

 Serial.println("Active");

#endif

 if (bMoved) {

 client.publish(sTopic,"Moved");

 }

 else {

 client.publish(sTopic,"Present");

 }

 if (statusReport || !bFound){

 char status[300];

snprintf(status,300,"{“Address”:”%s”,”RSSI”:%ld,”Zone”:%ld,”Status”:”Present”",deviceList[foundIndex],

deviceRSSI[foundIndex],Zone);

 if (d.haveName()){

 snprintf(status,300,"%s,”Name”:”%s”",status,d.getName());

 }

 if (d.haveAppearance()){

 snprintf(status,300,"%s,”Appearance”:”%ld”",status,d.getAppearance());

 }

 /* manf data causes inability to publish payload

 if (d.haveManufacturerData()){

 std::string md = d.getManufacturerData();

 uint8_t* mdp = (uint8_t*)d.getManufacturerData().data();

Page 616

 char *pHex = BLEUtils::buildHexData(nullptr, mdp, md.length());

 snprintf(status,300,"%s,”ManufacturerData”:”%s”",status,pHex);

 free(pHex);

 }

 */

 if (d.haveServiceUUID()) {

 snprintf(status,300,"%s,”ServiceUUID”:”%s”",status,d.getServiceUUID().toString());

 }

 if (d.haveTXPower()){

 snprintf(status,300,"%s,”TxPower”:”%ld”",status,d.getTXPower());

 }

 snprintf(status,300,"%s}",status);

 snprintf(sTopic,40,"%s%s%s",outTopic,addr,"/INFO");

 client.publish(sTopic,status);

#ifdef SERIAL_PRINT

 Serial.print(foundIndex);

 Serial.print(" Publish ");

 Serial.print(sTopic);

 Serial.print("=");

 Serial.println(status);

#endif

 }

 }

 }

}

// Assess if any devices dropped off scan

void EvaluateInActive() {

 #ifdef SERIAL_PRINT

 Serial.print("EvaluateInActive ");

 Serial.println(deviceIndex);

#endif

 for (int i = 0; i < deviceIndex; i++){

 char addr[18];

 strcpy(addr,deviceList[i]);

 addr[2]='-';

 addr[5]='-';

 addr[8]='-';

 addr[11]='-';

 addr[14]='-';

 if (!deviceFound[i]) {

Page 617

 if (!deviceInactive[i]) {

 char sTopic[40];

 snprintf(sTopic,40,"%s%s",outTopic,addr);

#ifdef SERIAL_PRINT

 Serial.print(i);

 Serial.print(" Publish ");

 Serial.print(sTopic);

 Serial.print("=");

 Serial.println("Abscent");

#endif

 client.publish(sTopic,"Abscent");

 deviceInactive[i] = true;

 }

 }

 if (deviceInactive[i]) {

 // provide info for devices previously discovered, but now missing

 // show last known zone and RSSI and abscent status

 if (statusReport) {

 char status[200];

 int Zone = -deviceRSSI[i]/5;

snprintf(status,200,"{“Address”:”%s”,”RSSI”:%ld,”Zone”:%ld,”Status”:”Abscent”}",deviceList[i],deviceRSS

I[i],Zone);

 char sTopic[40];

 snprintf(sTopic,40,"%s%s%s",outTopic,addr,"/INFO");

 client.publish(sTopic,status);

#ifdef SERIAL_PRINT

 Serial.print(i);

 Serial.print(" Publish ");

 Serial.print(sTopic);

 Serial.print("=");

 Serial.println(status);

#endif

 }

 }

 }

}

// assure connected to broker, evaluate new and missing devices, assess if periodic INFO report needed

void loopWiFi()

{

 // eval if time to report periodic status

 statusCount++;

Page 618

 if (statusCount >= STATUS_TIME) {

 statusCount = 0;

 statusReport = true;

 }

 else {

 statusReport = false;

 }

 if (!client.connected()){

 reconnect();

 }

 client.loop();

 EvaluateActive();

 EvaluateInActive();

 //reset flag to be able to detect when a device is no longer present

 // flag will be set if device still esists in scan

 for (int i = 0; i < deviceIndex; i++){

 deviceFound[i] = false;

 }

}

// main loop required per IDE, but does nothing

void loop() {

 delay(10);

}

Page 619

20.17 RFID

20.17.1 CheaperRFID
CheaperRFID is an active RFID transmitter and receiver pair that surfaced over ten years ago. The RF

transmitter sends a four-character identification approximately every two seconds. The lack of a

transmission indicates that the transmitter is no longer in range. A 9600 baud serial interface is used to

transfer the reception information to a host processor. A space character is used to delimit

transmissions. A model 9315 receiver was later released that added two additional bytes of information

for signal strength.

A Wemos or other ESP8266 makes for a good host and MQTT used to provide ON/OFF presence

indication. A picture of the CheaperRFID receiver with case and Wemos D1 mini is shown in Figure 349.

The connection between the ESP8266 and CheaperRFID is at the TX, RX and Gnd on DB9 connector pins

2,3 and 5 and the D1 mini on TX, RX and Gnd pins. It was not obvious to me if the CheaperRFID

supported the RS-232 levels since it was powered with 12VDC. I used level converter to be safe but it

may not have been necessary. Power to the D1-mini can be picked off the 12VDC used by the

CheaperRFID and a regulator such as 7805 to provide 5VDC power to the module.

Page 620

Figure 349 CheaperRFID Receiver with Wemos D1 Mini

The firmware update of Tasmota 6.4.1 is at http://mcsSprinklers.com/mcsTasmota.zip file

mcsTasmota641C.bin. It is 483K so should be able to be flashed and later OTA update done in a single

step.

The Tasmota configuration required is for the Wifi credentials and MQTT information. No Module

configuration is needed as no user-defined pins are used. From the console the following two

commands are needed to establish the serial pins to be used by CheaperRFID rather than as an alternate

console. These can be done by MQTT, Browser Console page, or serial port.

Bauderate 9600

Serialsend anything

The firmware report payload of ON or OFF based upon a transmitter reporting within a user-specified

time. The topics are only transmitted in the change of ON (present) and OFF (not-present) states.

Provisions for 20 transmitters was made. These are retained in flash memory once discovered. All 20

locations can be cleared with the MQTT command RFIDClear (e.g. MQTT message RFID/RFIDClear topic

with don’t care payload). This can be done at the Browser console as well.

http://mcssprinklers.com/mcsTasmota.zip%20file%20mcsTasmota641C.bin
http://mcssprinklers.com/mcsTasmota.zip%20file%20mcsTasmota641C.bin

Page 621

The default timeout period for a transmitter to be reported as OFF (not-present) is 10 seconds. This can

be changed with the MQTT/Console command RFIDtimeout (e.g. Console command RFIDtimeout 20 to

change timeout to 20 seconds).

Periodic state information is provided in the RFID group of the STATE message. For example, the

message below with bolded content reflects three transmitter IDs (llog, 1234, and send) with timeout

values of 0. The 0 indicates there are no longer present. These are just test IDs. They conform to the 4

characters used by CheaperRFID, but the number/text combination will be different.

10:16:47 MQT: RFID/STATE = {"Time":"2019-08-

10T10:16:47","Uptime":"0T00:16:15","Vcc":3.048,"SleepMode":"Dynamic","Sleep":50,"LoadAvg":19,"W

ifi":{"AP":1,"SSId":"U","BSSId":"78:8A:20:84:48:1D","Channel":6,"RSSI":92}}

10:16:47 MQT: RFID/SENSOR = {"Time":"2019-08-10T10:16:47",RFID:{"EFGH":1},"RBTN3":1}}

10:20:02 MQT: RFID/SENSOR = {"Time":"2019-08-10T10:20:02",RFID:{"EFGH":0},"RBTN3":1}}

20.17.2 Cheapest RFID

20.17.2.1 Conclusion

I was successful in getting working configurations of cheap 433 MHz transmitters and receivers with

range of up to 150 ft. Total cost around $5 excluding power source. I evaluated both 5V and 12V

transmitter power and I was surprised that the range was not improved that much with the higher

voltage, but it was somewhat more consistent at reception with the higher voltage. The approach using

generic transmitter and receiver provided a little better range than the approach using the RF from

remote encoder/decoder, but at up to 50ft the remotes also worked.

I am not confident that then next set of generic 433 RF parts will perform the same as t he set I was

using. To get a working configuration with the generic components I needed to use a transmitter from

one source and a receiver from another. The paired units from the same source did not work together.

20.17.2.2 Analysis and Construction

Two approaches have been used to modernize the Active RFID presence solution. One uses a generic

433Mhz transmitter along with an ATTiny85 microcontroller and a paired receiver. The ATTiny85 was

obtained from Amazon at a cost of $2 each and used to provide the timing and pattern for the

transmitter.

https://www.amazon.com/gp/product/B01MDUHSWO/ref=ppx_yo_dt_b_asin_title_o04_s00?ie=UTF8&

psc=1

https://www.amazon.com/gp/product/B01MDUHSWO/ref=ppx_yo_dt_b_asin_title_o04_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B01MDUHSWO/ref=ppx_yo_dt_b_asin_title_o04_s00?ie=UTF8&psc=1

Page 622

Three RF products were evaluated. The first from Amazon at $1.30/pair worked well as a transmitter

with good range. The receiver was ineffective. I also tried to adjust the tuning coil and a variety of

antenna, but none of the three I applied had acceptable result. To assist with the analysis to isolate

transmit vs. receive issues a SDR https://www.amazon.com/NooElec-NESDR-SMArTee-Bundle-R820T2-

Based/dp/B079C4S2BT/ref=sr_1_6?keywords=nooelec&qid=1565541880&s=hi&sr=1-6-catcorr was used

with rtl_433 software from https://github.com/merbanan/rtl_433. This made it easy to see that the

SDR was able to reliably receive the transmissions that were decoded to the same as the transmissions,

thus isolating the problem to the 433 Mhz generic receiver from WINGONEER, assuming that the tuning

coil adjustment is too course to get the transmitter frequency. The two transmitters I used were

sending on 434.03 MHz and 434.06 MHz vs. the advertised frequency of 433.92.

https://www.amazon.com/gp/product/B07B9SD6LV/ref=ppx_yo_dt_b_asin_title_o03_s00?ie=UTF8&ps

c=1

https://www.amazon.com/NooElec-NESDR-SMArTee-Bundle-R820T2-Based/dp/B079C4S2BT/ref=sr_1_6?keywords=nooelec&qid=1565541880&s=hi&sr=1-6-catcorr
https://www.amazon.com/NooElec-NESDR-SMArTee-Bundle-R820T2-Based/dp/B079C4S2BT/ref=sr_1_6?keywords=nooelec&qid=1565541880&s=hi&sr=1-6-catcorr
https://github.com/merbanan/rtl_433
https://www.amazon.com/gp/product/B07B9SD6LV/ref=ppx_yo_dt_b_asin_title_o03_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B07B9SD6LV/ref=ppx_yo_dt_b_asin_title_o03_s00?ie=UTF8&psc=1

Page 623

The second was obtained from Aliexpress at $1.30/pair. I continued to use the transmitter in the

original evaluation and the receiver worked well. When I tried to use the transmitter from this second

source I was unable to get even as much as a 433 MHz carrier in two different units so while the receiver

was good, the transmitter was not functional in my testing. These units are WL101 Receiver and WL102

transmitter.

https://www.aliexpress.com/item/32840951211.html?spm=a2g0s.9042311.0.0.12c44c4dwg3h1k

The third was also obtained from Ebay for $2.30. For those in a rush then Amazon for just the receiver

at a higher cost of $6. It is advertised to have the added feature or providing RSSI signal strength, but I

was unable to get any data on how (or if) the RSSI is interfaced. I was also unable to get it to recognize

This Receiver

This Transmitter

https://www.aliexpress.com/item/32840951211.html?spm=a2g0s.9042311.0.0.12c44c4dwg3h1k

Page 624

the transmitter from either of the two above sources. I was also unable to get it to receive the data

from any of the transmitters I tried.

https://www.ebay.com/itm/RXB6-433Mhz-Superheterodyne-Wireless-Receiver-Module-for-Arduino-

ARM-AVR-/201535806115

https://www.amazon.com/gp/product/B01NCQVFYE/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&ps

c=1

A good discussion on different low-cost RF products is at http://www.rflink.nl/blog2/wiring. It included

improvements to reduce digital noise and add a ground plane for the antenna. These improvements

made no difference in my case. This author’s recommendation is the unit from Aurel Wireless that has

an Italy source, but is not easily available in USA.

The second approach is also a 433 Mhz solution, but used the transmitter/receiver pair designed for use

in four-button remotes. The ATTiny85 continued to be used to provide the timing duty cycle. A discrete

timer such as 555 was also considered, but component count was higher and randomness to avoid

collision could not be implemented easily with the discrete approach.

The transmitter/receiver pair used was $1.50/pair. These also provided good operation and like the

generic 433 Mhz transmitter the voltage could be increased to 12 or 24 VDC to increase range. There

was sufficient range to determine occupancy anywhere in or near the house using 5 VDC for the

transmitter.

https://www.aliexpress.com/item/32998698554.html?spm=a2g0s.9042311.0.0.12c44c4dwg3h1k

https://www.ebay.com/itm/RXB6-433Mhz-Superheterodyne-Wireless-Receiver-Module-for-Arduino-ARM-AVR-/201535806115
https://www.ebay.com/itm/RXB6-433Mhz-Superheterodyne-Wireless-Receiver-Module-for-Arduino-ARM-AVR-/201535806115
https://www.amazon.com/gp/product/B01NCQVFYE/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B01NCQVFYE/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
http://www.rflink.nl/blog2/wiring
https://www.aliexpress.com/item/32998698554.html?spm=a2g0s.9042311.0.0.12c44c4dwg3h1k

Page 625

The ATTiny85 and all the transmitters had about the same ¾ inch footprint so I used 2-sided tape to

mount the two boards to each other and stitched wired the power, ground and data signal needed for

the communications. See Figure 350 and Figure 351 for the construction.

If a higher voltage is to be provided to the transmitter than the 5 VDC used for the ATTiny85 then the

power wiring will not be direct, but likely include a 7805 regulator to step down the higher voltage such

as shown in Figure 352. Only one RF transmitter shown in the diagram will be connected for any given

implementation. If 3 V to 5 V is used then all the 12V connections and 5V connections are combined

and the 7805 is not used.

If the 7805 is to be added then it can also be piggybacked with 2-sided tape and short wiring

connections stitch soldered. I did confirm that the 5 VDC provided by the ATTiny85 to be sufficient to

control the waveform when the transmitter is connected to 12 VDC.

If a 5VDC rather than 12VDC source is to be used then the 7805 would not be used and 5VDC from the

ATTiny85 wired directly to the transmitter. In this configuration it is possible to provide power from the

USB connector on the ATTiny85 or it can be provided with direct wiring from a battery or other source.

This Receiver and Transmitter

Page 626

Figure 350 Generic 433 MHz RF Transmitter

Figure 351 ATTiny85 Piggyback to RF Transmitter

The receiver was paired to Wemos D1 mini. I had previously purchased these, but they are similar to

Amazon https://www.amazon.com/IZOKEE-NodeMcu-Internet-Development-

Compatible/dp/B076F52NQD/ref=sr_1_2?crid=3GPEKA9BX2YQE&keywords=lolin+d1+mini&qid=156546

6096&s=gateway&sprefix=lolin%2Caps%2C296&sr=8-2 at $3.60 each. Two GPIO pins were used for

input. One from the generic 433 Mhz receiver and one from the RF Remote receiver. These are shown

in wiring connections of Figure 353.

https://www.amazon.com/IZOKEE-NodeMcu-Internet-Development-Compatible/dp/B076F52NQD/ref=sr_1_2?crid=3GPEKA9BX2YQE&keywords=lolin+d1+mini&qid=1565466096&s=gateway&sprefix=lolin%2Caps%2C296&sr=8-2
https://www.amazon.com/IZOKEE-NodeMcu-Internet-Development-Compatible/dp/B076F52NQD/ref=sr_1_2?crid=3GPEKA9BX2YQE&keywords=lolin+d1+mini&qid=1565466096&s=gateway&sprefix=lolin%2Caps%2C296&sr=8-2
https://www.amazon.com/IZOKEE-NodeMcu-Internet-Development-Compatible/dp/B076F52NQD/ref=sr_1_2?crid=3GPEKA9BX2YQE&keywords=lolin+d1+mini&qid=1565466096&s=gateway&sprefix=lolin%2Caps%2C296&sr=8-2

Page 627

The Wemos D1 mini GPIO inputs expect voltages in the range of 0 to 3.3V while the RF Receiver provides

a 0 to 5V range. A level shifter was used to mate these two levels. It could also have been done with a

resistor voltage divider more easily.

The design supports both types of RF receivers being used together. Normally only one type of RF

receiver is used.

The generic receiver can support many transmitters, each with unique RFID codes. The RF Remote can

support 4 transmitters and each requires a separate GPIO input on the D1 Mini.

Figure 352 RFID Transmitter Connections

Page 628

Figure 353 RFID Receiver Connections

Tasmota 6.4.1 was augmented to support both of the approaches and both can be used together if

desired. The MQTT reporting is contained in the SENSOR subject using JSON key “RFID”. The tag ID and

a 0 vs. 1 payload are provided. The 1 indicates presence. For the RF Remote the convention of “RBTN”

followed by number from 1 to 4 is used to identify the transmitter. For the generic, the tag id is

encoded by ATTiny85 as part of its transmission.

10:16:47 MQT: RFID/SENSOR = {"Time":"2019-08-10T10:16:47",RFID:{"EFGH":1,"RBTN3":1}}

10:20:02 MQT: RFID/SENSOR = {"Time":"2019-08-10T10:20:02",RFID:{"EFGH":0,"RBTN3":1}}

The Tasmota configuration showing use of both approaches is presented in Figure 354 with the RFID

type being for the generic receiver and the RFIDRemote1, RFIDRemote2, RFIDRemote3, and

RFIDRemote4 for the remote receiver. The binary can be found in

http://mcsSprinklers.com/mcsTasmota.zip mcsTasmota641CheapestRFID.bin

http://mcssprinklers.com/mcsTasmota.zip

Page 629

Figure 354 Configuration for Two RFID Receiver Options

Page 630

The ATTiny85 obtained was installed on a development board that is a clone of the Digispark

product. This makes programming the device much easier. Setup instructions for the Arduino

environment for it are at http://digistump.com/wiki/digispark/tutorials/connectingpro.

The ATTiny85 was programmed to simulate a button push on a 5 second +/- 500 ms interval for

200 ms for the RFID remote. This resulted in the waveforms shown in Figure 355. These

waveforms were taken from Universal Radio Hacker https://github.com/jopohl/urh that

supports the SDR from NooElec.com https://www.amazon.com/NooElec-NESDR-SMArTee-

Bundle-R820T2-

Based/dp/B079C4S2BT/ref=sr_1_6?keywords=nooelec&qid=1565541880&s=hi&sr=1-6-catcorr

The 200 ms provided time for seven replications of the RF code. When this was reduced to 100

ms the receiver was no longer able to lock on and decode the signal. The periods selected

provide a duty cycle of 200/5000 = 4% which should provide a good balance of power vs.

detection latency.

During transmission on the transmitter, and following detection the receiver, a LED blinks on

each which makes the operation each to see visually. The transmitter LED could be removed if

further power reduction is desired then. It is a surface mount part.

Figure 355 1517 Learning Remote RF Pulse Pattern

The ATTiny85 was also programmed to use ASK to transmit a hard-coded four character sequence

followed by a space character. The RadioHead library https://github.com/adafruit/RadioHead was used

to simplify the encoding implementation. To change the four characters a new source compile is

required. The sketch is shown below.

#include <RH_ASK.h>

 // This sketch transmits both ASCII and 1517 Remote.

 // The actual RF will be determined by the hardware connected

 // P3 connects to 1517 remote channel to active the "button"

http://digistump.com/wiki/digispark/tutorials/connectingpro
https://github.com/jopohl/urh
https://www.amazon.com/NooElec-NESDR-SMArTee-Bundle-R820T2-Based/dp/B079C4S2BT/ref=sr_1_6?keywords=nooelec&qid=1565541880&s=hi&sr=1-6-catcorr
https://www.amazon.com/NooElec-NESDR-SMArTee-Bundle-R820T2-Based/dp/B079C4S2BT/ref=sr_1_6?keywords=nooelec&qid=1565541880&s=hi&sr=1-6-catcorr
https://www.amazon.com/NooElec-NESDR-SMArTee-Bundle-R820T2-Based/dp/B079C4S2BT/ref=sr_1_6?keywords=nooelec&qid=1565541880&s=hi&sr=1-6-catcorr
https://github.com/adafruit/RadioHead

Page 631

 // P4 connects to generic transmitter that will send ASK

 // It is possible to connect both types of transmit hardware,

 // but intention is that only one will be used at a time

 // P4 is used to transmit.

 // No receiver connected to ATTiny85 so P2 not used,

 // but will be initialized as input

 // ATTiny, RX on D3 (pin 2 on attiny85)

 // TX on D4 (pin 3 on attiny85), 2000 bits/sec

 RH_ASK driver(2000, 2, 4, 0);

 uint8_t id[5];

void setup()

{

 pinMode(3,OUTPUT);

 digitalWrite(3,HIGH);

 driver.init();

 // define a unique ID.

 // In this case ABC followed by A to Z

 // and terminated with space

 // receiver will look for ABC as being unique

 // and the 4th to determine if it is missing transmissions

 id[0] = 65; //ABCx space

 id[1] = 66;

 id[2] = 67;

 id[3] = 65;

 id[4] = 32;

}

void loop()

{

 // Send Encoded ASCII via ASK modulation to Pin 4

 driver.send(id,5);

 driver.waitPacketSent();

 // Send 1517 Remote Code to Pin 3 for 200 milliseconds

 digitalWrite(3,LOW);

 delay(200);

 digitalWrite(3,HIGH);

 // Ramdomize the interval to minimize collisions

 // if multiple transmitters are used

 delay(4300+random(1000));

 // Update the 4th character of the ASCII

 // so missing receptions can be detected

 id[3]++;

 if (id[3] > 90) id[3]=65;

}

Page 632

20.18 RF Transmitter via QIACHIP
The QIACHIP was used in the Cheapest RFID evaluation project described in Section 20.17.2. It provides

a very simple way to transmit a RF code that can be recognized by devices that are able to respond to

keyfobs.

An ESP8266, such as with Wemos D1 Mini, can directly control any of the four QIACHIP pins to transmit

four unique RF codes. Two QIACHIPs can be used with the ESP8266 for ability to have eight channels of

control with the ESP8266. Of course, other processors with more GPIO could extend it even further or

multiple ESP8266 used as well.

Tasmota was loaded into the ESP8266 and configured as a Sonoff 4CH Pro. This provided an easy way

for a UI that controls each of the four channels of RF. The Sonoff 4CH Pro GPIO then had to be aligned

with the pins on the Wemos D1 Mini and with the pins on the QIACHIP. This relationship and the color

or wires used during construction as shown in Table 9.

Table 9 QIACHIP to ESP8266 Wiring

Function GPIO Wemos Pin QIACHIP Pin Wire Color

Relay 1 12 D6 1 Green

Relay 2 5 D1 2 Yellow

Relay 3 4 D2 3 Blue

Relay 4 15 D8 4 Yellow

Button 1 0 D3 N/A Green

Button 1 return N/A Gnd - Black

Button 2 9 N/A N/A N/A

Button 3 10 N/A N/A N/A

Button 4 14 D5 N/A N/A

Power N/A 5V + Red

Gnd N/A Gnd - Black

Tasmota was configured with poweronstate of 5 for each of the four channels. This provides a negative

going pulse each time the channel is commanded. The pulse duration was found to work well at 0.5

seconds. The Tasmota command for this configuration is:

Backlog poweronstate 5; poweronstate2 5; poweronstate3 5;

poweronstate4 5; pulsetime 5; pulsetime2 5; pulsetime3 5;

pulsetime4 5

Page 633

A 3D printer case was made with external tabs for mounting, a peephole for reset button, an opening

for the microUSB power cable and a shelf to separate the WemosD1 mini from the QIACHIP. In addition,

a small pushbutton was added via hot glue to provide local contorl of the first RF channel. This part of

the project is shown in Figure 357.

The MQTT Topic was selected to be QIACHIP on the Tasmota Configuration – MQTT page. Status for

each of the four channels will be steady state QIACHIP/POWER1 ON. The event of transmitting RF will

be indicated by QIACHIP/POWER OFF followed 0.5 seconds later by QIACHIP/POWER1 ON.

When the association is made in mcsMQTT and edited to include the publish topic and change the VSP

for OFF to have a button label of Send RF. Device Management in HS was then used to make the OFF/0

control only so only the Send button remains. The ON=1 state was deleted in HS Device Management.

This is shown in Figure 356.

Figure 356 Setup of RF Command Channel in mcsMQTT and HS

Only one channel was setup, but a similar process is used for any of the other three if they are used.

When doing local control with the pushbutton one needs to develop the technique of doing short

presses. If the button is held then two RF commands will be sent. One on the leading edge of the

button press and one on the trailing edge. If the device receiving the RF, such as a Sonoff RF, does a

toggle then a long button push will result in no change.

When viewing the decode QIACHIP transmission with Sonoff RF Bridge (or SDR/RTL_433) it can be seen

similar to as shown below. In this case the Data 877C04 is the unique code for the one QIACHIP channel.

Other channels will each have their own unique code.

17:03:14 MQT: SonoffRF/RESULT = {"Time":"2021-02-

04T17:03:14","RfReceived":{"Sync":7730,"Low":250,"High":750,"Data":"877C04","RfKey":"None

"}}

Page 634

Figure 357 RF Transmitter Before and After Wiring

Page 635

20.19 RFID-RC522

The RC522 is a very low cost RFID reader that will report the ID encoded on keychain tags or credit-card

size cards such as those used for unlock of motel room doors. Many choices are available such as

Amazon.com: HiLetgo 3pcs RFID Kit - Mifare RC522 RF IC Card Sensor Module + S50 Blank Card + Key

Ring for Arduino Raspberry Pi : Electronics

Do be aware of the frequency being used as there is variance. These are 13.56 MHz units.

The interface is SPI so becomes easy to use with ESP8266 or ESP32 and Tasmota firmware MFRC522

RFID reader - Tasmota. The RC522 logic is not enabled by default in Tasmota, so build from source

is required. The setting in the source code configuration file to be enabled are SPI support and RC522

support. Platform IO under Visual Studio Code were used with the source obtained from GitHub for the

most current (13.4.0.3) at GitHub - arendst/Tasmota: Alternative firmware for ESP8266 and ESP32 based

devices with easy configuration using webUI, OTA updates, automation using timers or rules,

expandability and entirely local control over MQTT, HTTP, Serial or KNX. Full documentation at

This project was initiated by pyspilf on the Homeseer Message Board thread WIFI NFC/RFID reader w/

MQTT - HomeSeer Message Board The discussion thread is a good read for the evolution of the project

with tips that may be useful for this or similar projects.

https://www.amazon.com/HiLetgo-3pcs-RFID-Kit-Raspberry/dp/B07VLDSYRW/ref=sr_1_4?crid=15NO40KQJQG2G&dib=eyJ2IjoiMSJ9.xoclCkcw_eRqi5KKftluXDF6wAJALEtzcvtOO6tlwnGrM2IzwMuBt9t-LKKVV0we1nHxRIEcL03KOM0AfjZHQ_AoOHdGUleCJp_xTmIECZCQKAsui4HKPMKnEhmqjrRGkXck2vfLkRaD-ryZwL8DgtQGEV6HwvvGHUMiUTcqvVXOdWbMZiC48O_PJgYuZjssVR3nJfR6njdaTW5kDDKfmdFTX7YkeRvVO3PeMhoqBiI.FIgbGKGpChLQ7M-yBnSZlWsvFK0OQvwv8nZZOp3eZFI&dib_tag=se&keywords=RFID+Rc522&qid=1712603230&sprefix=rfid+rc522%2Caps%2C180&sr=8-4
https://www.amazon.com/HiLetgo-3pcs-RFID-Kit-Raspberry/dp/B07VLDSYRW/ref=sr_1_4?crid=15NO40KQJQG2G&dib=eyJ2IjoiMSJ9.xoclCkcw_eRqi5KKftluXDF6wAJALEtzcvtOO6tlwnGrM2IzwMuBt9t-LKKVV0we1nHxRIEcL03KOM0AfjZHQ_AoOHdGUleCJp_xTmIECZCQKAsui4HKPMKnEhmqjrRGkXck2vfLkRaD-ryZwL8DgtQGEV6HwvvGHUMiUTcqvVXOdWbMZiC48O_PJgYuZjssVR3nJfR6njdaTW5kDDKfmdFTX7YkeRvVO3PeMhoqBiI.FIgbGKGpChLQ7M-yBnSZlWsvFK0OQvwv8nZZOp3eZFI&dib_tag=se&keywords=RFID+Rc522&qid=1712603230&sprefix=rfid+rc522%2Caps%2C180&sr=8-4
https://tasmota.github.io/docs/MFRC522/#tasmota-settings
https://tasmota.github.io/docs/MFRC522/#tasmota-settings
https://github.com/arendst/Tasmota
https://github.com/arendst/Tasmota
https://github.com/arendst/Tasmota
https://forums.homeseer.com/forum/lighting-primary-technology-plug-ins/lighting-primary-technology-discussion/mcsmqtt-michael-mcsharry/1664452-wifi-nfc-rfid-reader-w-mqtt
https://forums.homeseer.com/forum/lighting-primary-technology-plug-ins/lighting-primary-technology-discussion/mcsmqtt-michael-mcsharry/1664452-wifi-nfc-rfid-reader-w-mqtt

Page 636

The schematic developed by pyspilf is shown in Figure 359 along with the Tasmota module setup and

MQTT setup. A status LED is added to provide a means of feedback of the card recognition status. It is

configured as a relay in Tasmota.

The prototype was built with Dupont wires and the final was done with direct soldering onto the boards

as shown in

Figure 358 RFID-RC522 Wiring

Page 637

Figure 359 RFID-RC522 Card Reader Schematic and Configuration

Page 638

When Tasmota starts it reports its configuration over the serial connection (USB cable), connects to WiFi

and then reports using MQTT protocol.

When a card or tag is read a SENSOR message is delivered with the UID that has been encoded into the

card or tag. This information appears in mcsMQTT Association Table as below.

The UID row is associated with a HS Device Feature, setup on the Edit Tab as a List Control/Status type.

As new tags are read, the VSP entries will be added to mcsMQTT and HS Feature with a unique number

assigned to each. This can be used for triggering events etc. The Edit Tab can also be used to assign

friendly names to the UID for better recognition on the HS Devices Page. By default the status will be

the same as the UID, but can be changed in a format such as 823A4B1A=0;Jerry;Jerry to give the UID a

friendly name of Jerry.

Page 639

20.20 LED Matrix Sign
LED Matrices are commonly available in densities of 8x8 to 128x64 pixels with pitches ranging from 1

mm to 8 mm. Two technologies are available. One where the controller provides data lines to each row

and each column of each of three LEDs and continuously scans to illuminate the pixel. There are

commonly called RGB Matrix Panels or HUB75 Led Panels. The other is where the controller uses a

single data line to address each pixel in a daisy chain manner and each pixel then maintains the color

specified without further refresh. These are called Neopixels, WS2812 or similar devices.

This LED Matrix sign uses the Neopixel organized as tiles of 8x8 pixels at 8 mm pitch. They are available

at https://www.aliexpress.com/item/10pcs-WS2812-LED-5050-RGB-8x8-64-LED-Matrix-for-

Arduino/32658190926.html?spm=a2g0s.9042311.0.0.1d4b4c4dBPbFj0. The ten tiles were arranged to

be two high and five wide thus giving a 40 pixel wide by 16 pixel high sign of dimensions 13 inches by 5.5

inches. Bigger or smaller signs can be constructed by using a different number or combination of the

tiles. Each tile contains an input pin, an output pin, 5VDC pin and Ground pin. The 5VDC and Ground

are bussed together and the output and input pins are daisy chained with the last output pin left

unconnected.

During the construction there should be consideration for the power distribution. If 5VDC and Ground is

daisy chained as was the data pins then there likely will be a perceptible voltage drop between the first

and last tile and this will be reflected in a change of brightness. Bussing the power and connecting the

power source in the middle of the bus will provide the best results. In my case I used Cat 5 (24 gauge)

wire for all the connections.

For my initial construction I 3D printed a base with channels and an outside rim to contain the tiles. The

wires were routed through the channels behind the tiles. Over the top I wrapped parchment paper to

provide a diffuser and to hold the tiles from falling forward. This worked as a prototype, but suffered

from the tiles not being positively attached on case thus giving a variation in the depth behind the

parchment paper. It also lacked sufficient stability in keeping the tiles aligned should the sign be

dropped.

For the final install double sided tape was used to attach the panels more positively. A simple piece of

hardboard was used in favor of the 3D base. The tape’s thickness provided sufficient clearance for the

24-gauge wire. A picture-frame style boarder was made from wood and taught tissue paper glued onto

the edge to wood boarder used for the diffuser. Also attached to the edge of the frame is a light-

dependent resistor to adjust the sign brightness to ambient room lighting and a switch for local on/off

control.

20.20.1 LED Sign Construction
This sign was constructed from tiles containing 64 LEDs. Ten tiles were used in a two-row configuration.

The ten tiles were temporarily aligned with transparent tape and then mounted on a 1/8” plywood strip

using double sided tape. A wood frame was built and router used to rabbit the short sides to provide

offset for mounting the t

Each tile has a digital input, digital output and two points for power and ground. The wiring strategy is

to daisy-chain the digital in a consistent manner and provides a low resistance path for power with the

power supply connection made in the middle of the power wiring. 24-gauge CAT5 wire was used for the

https://www.aliexpress.com/item/10pcs-WS2812-LED-5050-RGB-8x8-64-LED-Matrix-for-Arduino/32658190926.html?spm=a2g0s.9042311.0.0.1d4b4c4dBPbFj0
https://www.aliexpress.com/item/10pcs-WS2812-LED-5050-RGB-8x8-64-LED-Matrix-for-Arduino/32658190926.html?spm=a2g0s.9042311.0.0.1d4b4c4dBPbFj0

Page 640

point to point solder connections. The soldering of the tiles was done after mounting on the plywood

strip but before mounting the two strips in the frame.

After screwing the plywood strips onto the frame, the other electronic components were mounted.

Two sensors were used. The photo-resistor was loosely placed inside a hole drilled on the side of the

frame. I felt the side was a better place than the front since the front is subject to the immediate effect

of the LEDs being illuminated. It was not permanently mounted to allow it to be moved in and out of

the drill hole should adjustment be needed to get the correct ambient light levels.

The DH11 temperature and humidity sensor is not required, but since I had them available, I included

one with mounting using two-sided tape on the top inside of the frame. It is the light blue item with

red, brown and black DuPont wires. I soldered the other side of these wires to the Wemos D1 mini

which is visible on the plywood strip in the lower right of Figure 360. It was also attached with 2-sided

tape, but screw holes are available for an alternate mount.

I used a 5V-3V voltage translator which is visible to the left of the D1 mini. It likely was not needed, but

just provided a degree of robustness to match the Wemos digital output with the specs of the WS2812

LEDs. Its wiring consisted of 5V, Ground, 3.3V, D1 output of D1 mini to the 3.3V side and the 5V side

went to the first LED tile in the daisy-chain. Figure 362 shows all the electrical connections.

A barrel connector was epoxied onto the frame to provide the 5VDC connection through an 18-gauge

wire to the power supply.

The front of the sign is shown in Figure 361. I elected to diffuse the light from the LED to provide a

muted display. This was accomplished with a polycarbonate cover over the front with orbital sander

that converted the finish from clear to matte. If one is trying to achieve maximum brightness for

applications in sunlight then no cover or a clear cover should be used.

Page 641

Figure 360 LED Sign Back

Page 642

Figure 361 LED Sign with Diffuser Mounted

Page 643

Figure 362 LED Sign Electrical Connections

20.20.2 Led Sign API Details
Table 10 shows the command topics that have been added to the standard list of Tasmota commands to

support communication with the LED sign. In this example the MQTT topic of the Led sign is “LedSign”

but could be changed if Tasmota Topic is configured differently.

The first twelve identify Text and the thirteenth identifies Image content to be shown. The next three

affect how the text or image is displayed. The LedSign/cmnd/ClearSign topic is used to support

management of the sign’s retained messages. It allows removal of messages without the need to know

the message id. If message id is known then a message with duration 0 will allow individual messages to

be removed. The last is used to accept the API key provided by Open Weather Map that is necessary to

download weather forecasts.

Table 10 LED Sign MQTT API

Topic Payload Description

LedSign/cmnd/PText1 JSON Text message and properties for first non-volatile

message buffer

Page 644

LedSign/cmnd/PText2 JSON Text message and properties for second non-

volatile message buffer

LedSign/cmnd/PText3 JSON Text message and properties for third non-volatile

message buffer

LedSign/cmnd/PText4 JSON Text message and properties for fourth non-

volatile message buffer

LedSign/cmnd/Text1 JSON Text message and properties for first volatile

message buffer

LedSign/cmnd/Text2 JSON Text message and properties for second volatile

message buffer

LedSign/cmnd/Text3 JSON Text message and properties for third volatile

message buffer

LedSign/cmnd/Text4 JSON Text message and properties for fourth volatile

message buffer

LedSign/cmnd/Text5 JSON Text message and properties for fifth volatile

message buffer

LedSign/cmnd/Text6 JSON Text message and properties for sixth volatile

message buffer

LedSign/cmnd/Text7 JSON Text message and properties for seventh volatile

message buffer

LedSign/cmnd/Text8 JSON Text message and properties for eighth volatile

message buffer

LedSign/cmnd/Image Binary JPEG blocks of 120 bytes with header. See Table

12

LedSign/cmnd/Dwell Seconds Number of seconds a message appears until

replaced by another message queued to be

displayed. Default 10 seconds.

LedSign/cmnd/Scroll Milliseconds Number of milliseconds (with 50 ms resolution) to

wait until text longer than screen size is moved left

1 pixel. Default 50 milliseconds.

LedSign/cmnd/Pan Milliseconds Number of milliseconds (with 50 ms resolution) to

wait until image bigger than screen size is moved

left/up/right/down 1 pixel. Default 150

milliseconds.

LedSign/cmnd/ClearSign Not used Clear all twelve of the message buffers

LedSign/cmnd/OWMKey Ascii Free API key obtained from Open Weather Map

https://openweathermap.org/price used for

forecast download when no other messages or

images are shown on the last row of the display.

An entry of less than 10 characters for the key will

be treated as request to not download forecast.

LedSign/cmnd/TimeColor RRGGBB Color of HH:MM:SS displayed on first row of sign

when no other message is being shown on first

row

https://openweathermap.org/price

Page 645

LedSign/cmnd/WeatherColor RRGGBB Color of weather forecast displayed on last row of

sign when no other message is being shown on the

last row

The LedSign/cmnd/Text and LedSign/cmnd/PText topics uses JSON payload to specify characteristics of

the text that is being displayed. The JSON keys and their use are shown in Table 11.

Table 11 MQTT Text Topic JSON Payload Keys

JSON Key Text/Number Description

duration Number

optional

Number of seconds a message should be retained

for display. After duration the message is no longer

shown. 65535 is used to continue to display the

message until manually removed. 0 is to no longer

show the message.

row Number

optional

Text row of sign where message will be shown. Top

row is 1.

color Text

optional

Six hex characters in RRGGBB format. The text will

use this color unless succeeded by embedded color

encoding contained in the “text” or “append” JSON

keys.

text Text

optional

Text to be displayed on selected row. To change

the text color on a character-by-character basis use

[RRGGBB] prior to the character.

append Text

optional

Same as text key but will result in message being

appended rather than replacing the text of message

with the same topic. This is used to show messages

greater than 120 characters. Provisions for

persistent messages are 80 characters so not

usually needed for these. Volatile messages can be

up to 320 characters.

Table 12 MQTT Image Upload Payload Protocol

Byte Field Description

0 Data Type

ASCII

1 = last record

2 = jpg encoding

3 = bitmap encoding (provisional)

1 Sequence Number

ASCII

Index to identify which block of data is being transferred. First block

is 0. Provisions exist for 10,000 bytes in RAM so maximum sequence

number is (10,000/120-1 = 83)

2 Number of Bytes Number of data bytes in payload with max of 120

Page 646

ASCII

3 Data

Binary

Up to 120 bytes of binary data comprising the image

The reporting API follows the Tasmota convention of acknowledging the commands received. It also

reports a change in state of the TEXT, PTEXT and IMAGE topics. This normally when the content has

been changed on a row including when the duration has expired and the text has been removed. The

content of the payload is the row number that the content is shown with a 0 value for not showing. For

example:

Topic: LedSign/TEXT1

Payload: 0

One special topic has been added that provides the width and height of the sign during startup. It

consists of the sign topic /INFO4 with a JSON payload as shown below:

Topic: LedSign/INFO4

Payload: {"SignHeight":16,"SignWidth":40}

20.20.3 Led Sign Configuration
The hardware parameters of the LED sign are only configurable in source. User parameters are

configurable via Tasmota console, serial, or MQTT messages.

Two configurations are described here. One is with an input button used to virtually toggle the screen

on/off. One is with a relay output that drives a FET that physically removes/provides power to the LEDs.

The FET should be used when the power supply is not sufficient to drive all the LEDs and ESP8266 during

initial power up. The firmware will keep the LED power off until initialization is complete and normal

message content has been setup. This assures that the startup power will not disturb the ESP8266.

Figure 363 and Figure 364 show the Module setup where GPIO5 is required to be used for the WS2812

LED matrix. I was not able to find a way to specify the WS2812 GPIO based upon RAM vs. constant

memory.

Same constrains prevented for making the sign dimensions and orientation a run-time configuration.

During startup an INFO4 MQTT message will be published that shows the sign height and width

configured in the build.

The following is used in the source to specify the hardware parameters:

#define NEO_MATRIX_TOP 0x00 // Pixel 0 is at top of matrix

#define NEO_MATRIX_BOTTOM 0x01 // Pixel 0 is at bottom of matrix

#define NEO_MATRIX_LEFT 0x00 // Pixel 0 is at left of matrix

#define NEO_MATRIX_RIGHT 0x02 // Pixel 0 is at right of matrix

#define NEO_MATRIX_CORNER 0x03 // Bitmask for pixel 0 matrix corner

#define NEO_MATRIX_ROWS 0x00 // Matrix is row major (horizontal)

#define NEO_MATRIX_COLUMNS 0x04 // Matrix is column major (vertical)

#define NEO_MATRIX_AXIS 0x04 // Bitmask for row/column layout

#define NEO_MATRIX_PROGRESSIVE 0x00 // Same pixel order across each line

#define NEO_MATRIX_ZIGZAG 0x08 // Pixel order reverses between lines

#define NEO_MATRIX_SEQUENCE 0x08 // Bitmask for pixel line order

#define NEO_TILE_TOP 0x00 // First tile is at top of matrix

#define NEO_TILE_BOTTOM 0x10 // First tile is at bottom of matrix

#define NEO_TILE_LEFT 0x00 // First tile is at left of matrix

#define NEO_TILE_RIGHT 0x20 // First tile is at right of matrix

#define NEO_TILE_CORNER 0x30 // Bitmask for first tile corner

Page 647

#define NEO_TILE_ROWS 0x00 // Tiles ordered in rows

#define NEO_TILE_COLUMNS 0x40 // Tiles ordered in columns

#define NEO_TILE_AXIS 0x40 // Bitmask for tile H/V orientationpaintp

#define NEO_TILE_PROGRESSIVE 0x00 // Same tile order across each line

#define NEO_TILE_ZIGZAG 0x80 // Tile order reverses between lines

#define NEO_TILE_SEQUENCE 0x80 // Bitmask for tile line order

#define NEOPIXEL_PIN 5 // GPIO 5 Wemos D1 (ESP32 pin 8) for Neopixel Sign

#define MATRIX_WIDTH 8 // 8 x 8 pixel matrix

#define MATRIX_HEIGHT 8

#define LED_SIGN_WIDTH 40 // total number of horizontal pixels on sign

#define LED_SIGN_ORIENTATION NEO_MATRIX_BOTTOM + NEO_MATRIX_RIGHT + NEO_MATRIX_ROWS +

NEO_MATRIX_PROGRESSIVE + NEO_TILE_TOP + NEO_TILE_ROWS + NEO_TILE_LEFT +

NEO_TILE_PROGRESSIVE

#define LED_SIGN_HEIGHT 16 // total number of vertical pixel on sign

FastLED_NeoMatrix *matrix = new FastLED_NeoMatrix(leds, MATRIX_WIDTH, MATRIX_HEIGHT,

LED_SIGN_WIDTH/MATRIX_WIDTH, LED_SIGN_HEIGHT/MATRIX_HEIGHT, LED_SIGN_ORIENTATION);

This setup corresponds to the upper left tile input going to ESP8266 GPIO 5 (D1). The output of this tile

to the input of the next tile to the right. The last tile’s output on this row goes to the input of the left-

most tile on the next row.

If the DHT11 is used for local temperature and humidity then it can be on any available GPIO. D2 was

selected for this setup in Figure 363. Any available pin can be selected for wiring the DH11T.

If the weather forecast is to be downloaded by the sign then specify location with the Tasmota

commands:

Latitude xxxxx

Longitude xxxxx

Also required for forecast download will be the following new command with the API key obtained from

Open Weather Map replacing the xxxxx.

OWMKey xxxxx

Another option is a button to toggle the LED Sign on and off. The on/off control can also be done from

the main Tasmota browser page as shown in Figure 365, MQTT POWER command (e.g.

LedSign/cmnd/Power 1) or if the Wemos emulation is setup on the Other Tasmota page then it can be

done with Amazon Alexa such as “Turn Sign On” if “Sign” was setup as the friendly name on the

Configure Other browser page. The Tasmota command “poweronstate 3” should be applied on console

or other means to retain the on/off status after power cycle.

The main Tasmota browser page provides a dimmer control as well as the readouts from LDR (Analog0),

and DH11T. The dimmer is set such that midpoint (50%) will provide nominal brightness if full light

conditions provide an LDR reading of 1024. If the install location provides less background light then the

dimmer can be increased. For example, in Figure 365 the LDR is reading 674 so it is causing the LED

brightness to be reduced by 674/1024 = 65%. To increase the LED to full intensity at this background

light level then the dimmer would be set to 77% (100%/65% /2). Setting it to higher values will not

increase full brightness, but will increase the brightness in lower ambient light conditions.

Page 648

Figure 363 LED Sign Module Setup

Page 649

Figure 364 Sign Configuration with FET to Control LED Power

Page 650

Figure 365 LED Sign Main Page

Other Tasmota pages can be configured to specify the MQTT, Logging and other parameters. There are

no constraints imposed by the sign on these other parameters.

The binary image can be found at http://mcsSprinklers.com/mcsTasmota.zip with file

mcsTasmota641Sign.bin. It is a 533 MB file so cannot be directly loaded after the initial flash. A process

http://mcssprinklers.com/mcsTasmota.zip

Page 651

of first loading mcsTasmotaMinimal.bin (450K) following by loading mcsTasmota641Sign.bin (533K) is

needed for the OTA update.

The following parameters are given for the binary. The JPEG libraries drive the PROGRAM size beyond

the ½ Meg boundary. The DATA is bumping up on the max allowed for RAM due to the 11,000 bytes

reserved for the image buffer that is also used for the forecast download. If other Tasmota features are

selected that make heavy use of RAM then the source would need recompilation after reducing the size

of the image/forecast buffer provision.

DATA: [========] 78.4% (used 64212 bytes from 81920 bytes)

PROGRAM: [=====] 52.8% (used 540512 bytes from 1023984 bytes)

If other hardware configurations are desired then it is easy to change the source parameters and other

binaries can be provided. For those who are able to compile from source the VSCode/Platform

environment with source files is at http://mcsSprinklers.com/mcsTasmotaRFIDSource.zip.

20.20.4 LED Sign Usage
The usage concept of the sign is that it can show an image covering the entire sign or can show

independent rows of colored text when not being used for an image. The bottom row of the sign, when

no directed messages are showing, is used to display the current temperature, humidity and textual

description of weather forecast over the next five days.

Upon power up the sign will show its pixel dimensions in an INFO4 message and will show the row on

which each of the image and text buffers is currently being shown. Only the persistent text messages

will show a non-zero row on power up. The update will be sent whenever the status of the message

changes. The following is a typical power up status provided by the sign.

11:58:53 AM LedSign/INFO4={"SignHeight":16,"SignWidth":40}

11:58:53 AM LedSign/IMAGE=0

11:58:53 AM LedSign/PTEXT1=1

11:58:53 AM LedSign/PTEXT2=0

11:58:53 AM LedSign/PTEXT3=0

11:58:53 AM LedSign/PTEXT4=0

11:58:53 AM LedSign/TEXT1=0

11:58:53 AM LedSign/TEXT2=0

11:58:53 AM LedSign/TEXT3=0

11:58:53 AM LedSign/TEXT4=0

11:58:53 AM LedSign/TEXT5=0

11:58:53 AM LedSign/TEXT6=0

11:58:53 AM LedSign/TEXT7=0

11:58:53 AM LedSign/TEXT8=0

Text Display

Figure 366 shows an example of two rows of text being displayed. The first row is a short message that

is statically displayed. The second row is a scrolling message the contains the five-day weather forecast

that is downloaded by the sign using the latitude and longitude entered in Tasmota.

http://mcssprinklers.com/mcsTasmotaRFIDSource.zip

Page 652

Figure 366 LED Sign Text

When the entire length of the message can be shown on its row then it will be shown statically. If it

exceeds the sign width then the message will scroll left pixel-by-pixel in a marques style.

A message has properties of row, color and duration.

A message will continue to be shown for the specified duration. After the duration has expired it will be

removed. A duration of 0 causes a message to be removed from flash or RAM. A duration of 65535

causes a message to never be automatically removed.

If multiple messages are being shown on a given row then the messages will be selected in round robin

fashion and each displayed in sequence. The dwell time of a given message before it is swapped out for

the next round-robin message is not a property of the message, but a global parameter than can be

specified by MQTT command.

The scroll speed of longer messages is also not a message property, but a global parameter set by MQTT

command.

Up to twelve messages can be stored in the sign. Four are stored in flash and eight in RAM. Those

stored in flash will persist a power cycle. The Topic command PTEXT vs. TEXT is used to designate the

location with PTEXT being stored in flash.

A message in flash can be up to 80 characters in length. Those in RAM can be 320 characters. These

character counts include the characters used to override the message color.

“color” is a property in the payload of the message or color can be embedded in the text/append of the

message using syntax [RRGGBB]. The override gives the ability to change the color on a character-by-

Page 653

character basis. Bright colors should be selected because the sign senses ambient light and dim colors

will then become black in lower lighting levels.

Kerning can be used to change the normal six-pixel per character text display with use of the non-

printable bytes 01 and 02 where 01 is to move cursor left one pixel and 02 is to move cursor right one

pixel. For example, a period normally has two black pixels, an illuminate pixel, and then three black

pixels. To remove the left two black pixels which effectively makes the period only four pixels wide the

following bytes would be used…01 01 2E which in VB is chr(1) & chr(1) & “.”.

The byte 03 is a square of three pixels by three pixels. It is used as a degree symbol as the standard font

library does not contain the degree symbol.

MQTT payloads have a 128-character limit. Two provisions exist to allow properties and text to span

multiple MQTT messages. Each or multiple properties can be included in an JSON payload of a given

topic with those not included retaining their value from prior messages for the same message id.

The second is when the text itself exceeds the payload message length. In this case the JSON key

“append” rather than “text” is used to cause the text to be appended rather than replace the text of the

message.

When no message is being requested in the last row then weather information is shown in that row. It

consists of the local temperature and humidity provided by the DH11T sensor and the forecast obtained

from Open Weather Map for the Latitude and Longitude that have been configured in Tasmota. This

provided requires an API key which is entered via MQTT command.

Some examples of MQTT messages are illustrated below. In this case the based topic of the sign is

“LedSign”.

Use the sign for text and put message “Long Message” on row 1 with color A01020 for 3 minutes. This

message will scroll because of the length of message exceeding 6 characters (40 pixels / 6

pixels/character).
Topic: LedSign/cmnd/Text1

Payload: {“duration":3,"color":"A01020",”row”:1,”text”:”Long Message”}

Use the sign for text and put message “Short” on row 0 with colors changing for the first five characters.

Show it for 4 minutes. This message will be statically displayed without scrolling.
Topic: LedSign/cmnd/Text2

Payload:

{”duration”:4,”row”:1,”text”:”<FF0000>S<00FF00>h<0000FF>o<FFFF00>r<00FFFF>t”}

Extend the “Long Message” text to include additional text in red.
Topic: LedSign/cmnd/Text1

Payload: {”append”:”<FF0000>Appended to Message in Red”}

Put a message in the fourth of the sign’s flash buffers that will continue to be displayed after power
cycles in green on second row until manually removed.
Topic: LedSign/cmnd/PText4

Payload: {“duration":65535,"color":"00FF00",”row”:1,”text”:”Permanent”}

Remove the fourth persistent message.
Topic: LedSign/cmnd/PText4

Page 654

Payload: {“duration":0}

Remove all stored messages. This will not remove the local weather message.
Topic: LedSign/cmnd/ClearSign

Payload: does not matter

HS Event to toggle row 2 display between inside temperature/humidity and

outside temperature1/greenhouse temperature. Event runs every three minutes

with a 2 minute duration of the outside reading. After two minutes the

default inside temperature and humidty is restored.

Action Send MQTT Message

LedSign/cmnd/TEXT6={"row":2,"duration":2,"color":"00FFFF","text":"<< CHAR(2)

& SROUND($$DVR:(587):,0) & CHAR(3) & CHAR(2) & CHAR(2) & CHAR(2) & CHAR(2) &

SROUND($$DVR:(588):,0) & CHAR(3) >>"}

Image Display

Figure 367 shows a jpeg image of a photograph that is being panned left and right to be able to see the

full image. In general, images up to twice the size of the sign provide good results. Larger images tend

to be difficult to comprehend because of the relatively small viewport being provided at any given

instant. If the image resolution is reduced too much before downloading then it may be hard to

visualize because of the low resolution provided by the smaller sign.

Page 655

Figure 367 LED Sign Image

JPEG images can be downloaded to the sign. Provisions also exist for bitmap images, but this provision
has not been implemented. JPEG was chosen because the critical resource on the ESP8266 is RAM and
JPEG minimizes the RAM utilization. 10,000 bytes of RAM are allocated for images so no more than a
10,000-byte jpeg image can be displayed. For signs with more than two rows the RAM allocation for jpg
has been reduced to 9,000 bytes to provide more RAM for the larger LED buffers.

If the image height and width can be shown in the available pixels of the sign then the image will be
statically displayed. If it exceeds one or more dimensions then it will be panned up/down/left/right to
show the entire image. The pan rate is a MQTT parameter.

The image will continue to be displayed until a Text topic is received.

Page 656

An example of requesting an image display is accomplished by sending multiple messages of the same
topic with the payload conforming to the Table 12 protocol. This protocol consists of three bytes of
header and then up to 120 bytes of binary data. The last of the messages has the payload’s first byte set
to ASCII 1.

Topic: LedSign/cmnd/Image

Payload: <per Table 12 protocol>

Page 657

20.21 Greenhouse Sensor and Control
A small greenhouse was constructed to assist with springtime seed germination and off-season vegitable

growth. The structure consists of an exhaust fan with spring-loaded baffle, a salvaged space heater

core, a pair of DS18B20 temperature sensor, a capacitive moisture sensor and three microcontrollers.

Figure 368 Greenhouse Structure

Page 658

The primary environmental control is provided by Sonoff 4CH Pro with stock Tasmota 8.5. This provides

relay control of the exhaust fan for cooling and each of two 750 watt elements of the space heater core

based upon temperature measurement of the DS18B20 temperature sensor.

Figure 369 Greenhouse Controls Install

Sonoff 4CH Pro

Heater Core

Water Drain

Water Baffle

BNLink Power

Page 659

20.21.1 Sonoff 4CH Pro

Figure 370 Greenhouse Sonoff 4CH Pro Configuration

A 4.7K pullup resistor between 3.3V and GPIO3 was used for the DS18B20. Since only a single sensor

was being used it could have been done using the internal pullup resistor inside the ESP8255 with

configuration through SetOption.

It would be possible to make source code changes to provide a setpoint interface via MQTT rather than

the hard-coded values, but the rules were the most expedient and easy enough to update the rule via

browser in the Tasmota console if desired.

Pass 1 Rule that was later changed to rule during interation 2

The control algorithm was implemented with the Tasmota rule shown below. The first is with control

resolution of 10 seconds and the second with control every minute. The issue experienced with

ruletimer is that sometimes it did not start so control period event did not trigger.

Rule1 ON system#boot DO backlog var1 0;var2 0;var3 0;ruletimer1 10 ENDON ON rules#timer=1 DO

backlog ruletimer1 10;power1 %var1%;power2 %var2%;power3 %var3% ENDON ON

DS18B20#Temperature<45 DO var2 1 ENDON ON DS18B20#Temperature<50 DO var1 1 ENDON ON

Page 660

DS18B20#Temperature>55 DO backlog var1 0;var2 0 ENDON ON DS18B20#Temperature>95 DO var3 1

ENDON ON DS18B20#Temperature<85 DO var3 0 ENDON

Rule1 ON system#boot DO backlog var1 0;var2 0;var3 0 ENDON ON Time#Minute DO backlog ruletimer1

10;power1 %var1%;power2 %var2%;power3 %var3% ENDON ON DS18B20#Temperature<45 DO var2 1

ENDON ON DS18B20#Temperature<50 DO var1 1 ENDON ON DS18B20#Temperature>55 DO backlog

var1 0;var2 0 ENDON ON DS18B20#Temperature>95 DO var3 1 ENDON ON DS18B20#Temperature<85

DO var3 0 ENDON

The same rule in a more understandable format:

Rule1 ON system#boot DO backlog var1 0; var2 0; var3 0; ruletimer1 10 ENDON

ON rules#timer=1 DO backlog ruletimer1 10; power1 %var1%; power2 %var2%; power3 %var3%

ENDON

ON DS18B20#Temperature<45 DO var2 1 ENDON

ON DS18B20#Temperature<50 DO var1 1 ENDON

ON DS18B20#Temperature>55 DO backlog var1 0; var2 0 ENDON

ON DS18B20#Temperature>95 DO var3 1 ENDON

ON DS18B20#Temperature<85 DO var3 0 ENDON

Var1, var2 and var 3 are the desired states of each of the relays. Var3 is the cooling. Var 2 is the second

heating element. Var1 is the first heading element and the fan for the two heating elements. The

desired control ranges are:

Above 95 run exhaust fan (var3) until cooling to 85 is achieved.

Below 55 run first heating element (var1) until 65 is achieved. If below 50 then also turn on the second

heating element (Var2)

Control sampling is done at 10 second intervals with ruletimer1.

When the temperature change event occurs (DS18B20#Temperature) then the above control ranges are

evaluated to set the three desired relay states.

Iteration 2 Updated Rule

It was determined that a single heater coil is sufficient for this size greenhouse. This provides for more

straightforward rules. Contorl points were also tweaked. Two rules are now employed. One for Heat

and one for Cool. This allows the rules to be independenly turned on and off. Mem1 is used to establish

the minimum setpoint for heating with a hysteresis of 10 degrees. Mem2 is used for the cooling

maximum setpoint with a 5-degree hysteresis. Control ranges are 50→55 heating, 80→75 cooling.

(Heat mem1 setpoint 50, hysteresis mem3 5)

rule1 ON DS18B20-2#temperature DO event t1=%value% ENDON ON Time#Minute DO Backlog

var3 %mem1%; add3 %mem3%; var1 %var3% ENDON ON event#t1<%mem1% DO Power1 1

ENDON ON event#t1>%var1% DO Power1 0 ENDON

Page 661

(Cool mem2 setpoint 80, hysteresis mem3 5)

rule2 ON DS18B20-2#temperature DO event t2=%value% ENDON ON Time#Minute DO Backlog

var4 %mem2%; sub4 %mem3%; var2 %var4% ENDON ON event#t2>%mem2% DO Power3 1

ENDON ON event#t2<%var2% DO Power3 0 ENDON

20.21.2 Sonoff Basic
A Sonoff Basic was used for the moisture sensor and the external temperature. Both of these could

have been done with the same Sonoff 4CH Pro, but soldering the A0 pin of the ESP8285 is difficult and I

had already done it with the Sonoff Basic so just applied it to this application.

The hardware mods to the Sonoff consisted of soldering a wire to the TOUT (A0) pin of the ESP8266 and

physical connection of the DS18B20 temperatue sensor to the solder point provided for GPIO14. AO is

only available on the ESP8266 SMD so a very fine solder iron under microscope magnification was

needed to make this available.

The Analog input used for the moisture sensor provides a range of 0 to 3 VDC. The AO input accepts

voltages in the range of 0 to 1 VDC so a voltage divider was used to scale the voltage. The resistors

selected are 39K on the ground side and 47K on the sensor side which provide an ambient air sensor

reading of 1.0 VDC. The 1.0 VDC is reported by the Sonoff as 1024. As moisture increase the voltage

decrease. The range that was experienced in the greenhouse was approximagely 600 to 1000 for the

DFRobot capacitance moisture sensor.

Page 662

Figure 371 Greenhouse Sonoff Basic Configuration

Page 663

The external temperature measurement is used for analysis of the temperature gradient inside vs.

outside the greenhouse. The moisture sensor is used in a control container to gauge when watering is

required.

Humidity measurement was also considered via use of DH11T rather than DS18B20, but there is no

control function needed based upon humidity so it was excluded.

20.21.3 BN-Link Power Plug
The power routed thorugh the Sonoff 4CH Pro is connected through a smartplug that has energy

monitoring capability. This plug is described in Section 20.13.8. It was selected based upon its 15 Amp

rating for the 1500-watt heater core.

There was no additional configuration for this plug other than selecting its power on state to always be

ON rather than the default of the prior state. The only parameter being monitored is the Total Energy

(Wattage) being consumed, but other current or daily measures are also available for specific

investigations. The Total Energy is desired to assess the cost of maintaining the environment.

Page 664

20.22 Solar Ground Heater

Spring ground temperatures are low due to effects of Winter and low sun angles. To increase the

growing season a water loop is run under raised bed with a coil exposed to sunlight and a recirc pump to

move the water. The recirc pump

(https://www.amazon.com/gp/product/B07QBMYXWY/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&

psc=1) is managed by a Sonoff S31 using temperature sensors to measure water temperature on the

exposed loop and the soil temperature at six-inch soil depth.

Figure 372 Solar Water Recirc Pump and Tank

Pump

Return

Rainfall Baffle

Water Resevoir

Page 665

Figure 373 Solar Collection Water Tubing

A rule is used to assure that water circulates in the tub to prevent freezing and also circulates when

there is a positive temperature differential between the ground temperature and the water

temperature in the tube. The rule is a variant of the Tasmota Rules Cookbook solar pool heater

example.

The control parameters of on/off hysteresis and the minimum air temperature for recirc are shown in

red in the rules below. When in a safe temperature range the recirc pump will turn on when the delta

temperature is at least 2 degrees and turn off when within 1 degree.

t1: ground temp

t2: air/heated temp

var1: in valid control temp range?

var2: off threshold temp with 1 degree hysteresis

var3: on threshold temp with 2 degrree hysteresis

var5: companion to var2 so assure var2 never holds temporary value

var6: companion to var3 to assure var3 never holds temporary value

lowest valid air temp for control set to >40 for heating, >36 for exit of freeze circulation

protection from freeze temperature <34 for bypass, <35 for pump freeze circulation

Rule 1 (Heat transfer control)

Page 666

Rule1 ON DS18B20-2#temperature DO event t2=%value% ENDON ON DS18B20-1#temperature DO

event t1=%value% ENDON ON event#t2<36 DO var1 0 ENDON ON event#t2>40 DO var1 1 ENDON ON

event#t2<35 DO var1 1 ENDON ON event#t1 DO Backlog var5 %value%; add5 1; var6 %value%; add6 2;

var3 %var6%; var2 %var5% ENDON ON event#t2>%var3% DO Power1 %var1% ENDON ON

event#t2<%var2% DO Power1 %var1% ENDON

A second rule was added to control a bypass switch. This switch will control if the water in the tube will

pass through the ground or will only return to the tank. When the recirc pump is running to protect

from freezing then the water should not be routed into the ground as that will decrease the soil

temperature. A Jinvoo water switch, shown in Figure 374, is used to control a two-way valve. It is

commanded to position every minute based upon the unheated water temperature used in rule 2.

(Rule 2 control bypass valve)

Rule2 on DS18B20-2#temperature>40 do var7 1 endon on DS18B20-2#temperature<35 do var7 0 endon

on Time#Minute do publish WaterSwitch/cmnd/power %var7% endon

The plumbing for project is diagrammed below. Rule 1 controls the on/off for the pump. Rule2 controls

the bypass (OFF) / normal (ON) for the 2-way valve. When the valve is in normal the water is routed

though the soil. When in bypass the flow through the ground is blocked and the bypass route is the

means for the water return to keep water moving in freezing temperatures. Of course, very low

temperatures will still freeze the water so until Spring the system is blown out with air to protect from

freezing.

 tank --------------> pump ---------------------->--------- Into Unheated Tube -----

 source | Sun-Exposed Coil

 Bypass (OFF) ----------<------- Exit Heated Tube <----------

 |<-------------------------| “T”

 tank <---| --------->--------- Ground Coil (Into Ground) ------>| Ground Coil

 return |<-----------------------------------<-------- Ground Coil (Exit Ground) <-------|

 Normal (ON) – handle vertical

 2-way valve

Page 667

Figure 374 Bypass flow control and 2-way valve

The project was installed in early March with 1000 ft irrigation tube coiled with 200 ft in the ground

under the raised bed and 800 ft coiled for sun exposure. Ground temperature six inches below the

surface was measured at 42.2 degrees at time of initial install. The behavior of the heat transfer is

shown in Figure 375. Even with a low sun angle the amount of heat transferred was significant with

ground temperature increasing by about 8 degrees.

The red line in the chart is the temperature at the tube prior to entry into the ground. The white line is

the ground temperature at 6-inch depth and 4 inches away from a tube. The yellow is the control for

the water recirculation pump showing water was moving until 7:30 PM and then resumed around

sunrise.

Bypass Path (off)

Normal Path (on)

Jinvoo Wifi Water Switch

Return Flow to Tank

Source Flow from Pump

Page 668

Figure 375 Solar Heat Transfer Control Performance

Page 669

A 2022 revision to the solar water heater is the addition of a bucket heater for the water resevoir as an

alternate means to protect the solar tubes from freezing. The 2021 approach was to turn on the recirc

pump when temperatures approach freezing and divert the water so it does not pass through the

ground soil. Moving water will have less chance of freezing.

The strategy for 2022 is to heat the water resevoir when the temperatures approach freezing and

continue to circulate the water when it is being heated. The bucket heater is powered through a Sonoff

S31 that has two temperture sensors connected. Temperature#1 is the water resevoir temperature.

Temperature#2 is the air temperature. Two rules are used. Rule1 is used to determine when the the

turn-on and turn-off setpoints have been traversed. Rule2 is used to control the power to the bucket

heater and to monitor for the heater being on too long. The protection is setup so that withing every

hours the heater cannot be on for more than 55 minutes and if it does exceed this it will be turned off

for 60 minutes independent of the temperatures. The protection is to prevent a runaway of the heater.

These protection thresholds still need to be tweaked based upon the observed heating rate.

Rule1 Narative

var1 power command

var2 on command

var4 count of on minutes

var5 too cold setpoint

var6 too hot setpoint

var7 max water temperature

DS18B20-1#temperature air temperature

DS18B20-2#temperature water temperature

DS18B20-3#temperature S31 case temperature

At startup define the variables to nominal state, setpoints, one-shot on rule1 and rule2 always on

Rule1 ON system#boot do backlog var1 0;var2 1;var4 0;var5 40;var6 50; var7 70;rule2 4;rule1 5;rule2 1

endon

Change the power command (var1) when either of the setpoint thresholds are exceeded. When Off

then power is 0. Var2 is used for the On state. Normal On state is 1, but could be 0 if rule2 timer

protection has been activated.

ON DS18B20-1#temperature<%var5% DO var1 %var2% ENDON

ON DS18B20-2#temperature>%var6% DO var1 0 ENDON

Twenty seconds after startup report the setpoints. Cannot do it at systemboot because everything has

not yet been setup.

ruletimer1 20 endon

on rules#timer=1 do publish %topic%/Setpoints {"Low":%var5%,"High":%var6%,"Max":%var7%}

Page 670

Rule2 Narative

Every 5 minutes command the relay to the rule1-determined state. If being turned on then Var4 will

count up to keep track of how long it has been on during the current hour. Event c4 is set to the count

so it can be used as trigger

Rule2 ON Time#Minute|5 DO backlog Power1 %var1%;add4 %var1%;event c4=%var4% ENDON

If the count exceeds hourly limit then change the On value (var2) to 0 so the relay will not be turned on

based upon rule1 temperature. Init the relay command (var1) to 0 so next minute it will turn off.

Publish MQTT to indicate the protection has been activated.

ON event#c4>55 do backlog var2 0;var1 0;publish %topic%/OnOvertime %var4%

Each hour reset the counter to 0. Every other hour reset the protection logic to enable the heater to be

turn on again based upon temperature thresholds.

ON Time#Minute|60 do var4 0 endon

ON Time#Minute|120 do var2 1 endon

If temperature exceeds max limit, then turn everything off and report via MQTT

ON DS18B20-1#temperature>%var7% DO backlog var1 0;var2 0;power 0;publish %topic%/Overtemp

%value% ENDON

If water temperature it too low then enable heater

ON DS18B20-2#temperature<%var5% DO var1 1 endon

Rules for Copy/Paste

Rule1 ON system#boot DO backlog var1 0;var2 1;var4 0;var5 40;var6 50;var7 70;rule2 4;rule1 5;rule2 1;

ruletimer1 20 ENDON ON rules#timer=1 do publish %topic%/Setpoints

{"Low":%var5%,"High":%var6%,"Max":%var7%} ENDON ON DS18B20-1#temperature<%var5% DO var1

%var2% ENDON ON DS18B20-2#temperature>%var6% DO var1 0 ENDON

Rule2 ON Time#Minute|5 DO backlog Power1 %var1%;add4 %var1%;event c4=%var4% ENDON ON

event#c4>55 do backlog var2 0;var1 0;publish %topic%/OnOvertime %var4% ENDON ON

Time#Minute|60 do var4 0 ENDON ON Time#Minute|120 do var2 1 ENDON ON DS18B20-

2#temperature>%var7% DO backlog var1 0;var2 0;power 0;publish %topic%/Overtemp %value% ENDON

ON DS18B20-1#temperature<%var5% DO var1 1 ENDON

Page 671

Figure 376 Bucket Heater Sonoff S31 Configuration

The Solar Water Heater Sonoff S31 Lite Rule 2 has been turned off for 2022. Rule1 remains unchanged.

2022 Rules for Solar Water Heater Sonoff S31 Lite

ON Rule1 ON DS18B20-2#temperature DO event t2=%value% ENDON ON DS18B20-1#temperature DO

event t1=%value% ENDON ON event#t1 DO Backlog var5 %value% add5 1; var2 %var5%; var3 %value%

ENDON ON event#t2<%var3% DO var1 0 ENDON ON event#t2>%var2% DO var1 1 ENDON ON

event#t2<36 DO var1 1 ENDON ON Time#Minute DO Power1 %var1% ENDON

OFF Rule2 on DS18B20-2#temperature>40 do var7 1 endon on DS18B20-2#temperature<35 do var7 0

endon on Time#Minute do publish WaterSwitch/cmnd/power %var7% publish

BucketHeater/cmnd/power %var7% endon

Page 672

20.23 Mail Delivery Notification via LoRa
The problem-space being solved is awareness of US Mail delivery for a mailbox that is located 600 ft

from house in a heavily wooded area. Several years ago, a mail delivery notification unit available at

Radio Shack was installed with a battery-operated RF sensor on the mailbox lid and the receiver unit

located about 100 ft away at the nearest power source. The audio of the receiver was interfaced to a

UPB IO module so when the mail alarm sounded a UPB message was delivered to HS for notification.

While protected from the elements the “inside rated” receiver died last year and replacement no longer

available. The replacement solution is a combination of Zigbee, LoRa and MQTT technologies. Zigbee

was selected for the mail delivery sensor based upon its efficient battery management. LoRa was

selected for RF that spans the 600 ft non-line-of-sight distance. MQTT was used as a matter of

convenience.

The sensor that was selected was a Xiaomi Aqura Vibration Sensor that is mounted on the door of the

mailbox. The sensor is small and does not interfere with the mailbox operation.

Figure 377 Vibration (Door Position) Sensor

The sensor worked well in bench testing with Y axis motion sensed. To receive the notification a CC2531

such as shown in Figure 378 was used. It was flashed with the same firmware as used for

Zigbee2MQTT.

Page 673

Figure 378 CC2531 Zigbee Coodinator

In field testing it appears the metal of the mailbox interfered with the operation of the vibration sensor.

The sensor would work fine in free air, but not when mounted to the metal surface.

The second choice was a Zigbee window/door sensor such as Aqura ZigBee Version Window Door

Sensor shown in Figure 379. In this case the larger component was mounted at the same location as the

vibration sensor on the mailbox lid. The smaller magnet was not use, but a smaller form factor magnet

was installed at the top of the mailbox to provide the “pull” of the reed relay in the part mounted on the

door. Since the mailbox was metallic the magnet could be mounted without any adhesive.

Figure 379 Door Open Sensor

Page 674

As a first choice for microcontroller to interface with Zigbee, ESP82666 running the Zigbee build of

Tasmota was used. This project is early in the development cycle and out-of-the-box success was not

achieved. My actual intent is to use ESP32 that has a LoRa interface integrated into its module and port

the Zigbee code from ESP8266 to the ESP32 using the port developed for the BLE tracking project.

Without success with ESP8266 I elected to put this approach on hold until the Tasmota-Zigbee matures.

The backup is the proven Zigbee2MQTT development that uses a processor similar to a Raspberry Pi. In

this case I utilized a Hardkernel Odroid C1 with DietPi OS (Debian Lite) installed. This previous effort was

described in Section 18.

Since the EPS32/Lora was on hold the LoRa interface became a pair of Ebyte EB32 LoRa transponders

such as shown in Figure 380. In my case the receiver was rated at 100 mw (which does not matter) and

the transmitter at 1W. Both use 433 MHz. The approved frequency for LoRa in USA is 915 MHz so the

433 MHz China-approved frequency may not be legal in US. Since it is point to point and 433 MHz was a

common sensor frequency, I felt comfortable using it. 433 MHz should actually be better through trees

than 915 MHz.

Figure 380 Ebyte EB32 LoRa Transponder

The EB32 uses a RS232 or RS485 to interface the controller. I elected the RS232 using a USB/Serial

adapter on the Odroid C1. This was a China-supplied adapter. I normally use a FTDI-clone chip, but tried

an old Prolific chipset one. It was recognized, but had issues with going offline. I added software

management in the C1 software to deal with it.

On the HS side I used two different models of FTDI-based USB/Serial. Given it worked with Prolific and

multiple FTDI I do not think the EB32 is very sensitive to the serial interface quality. In the first fielding I

used a Lantronix EPS1 (IP/Serial) adapter on the HS side so I could relocate the receiving EB32 to a

higher location that had better reception. mcsMQTT was updated to receive Serial from either IP/Serial

or COM sources.

Subsequently I removed the older technology Lantronix EPS1 and replaced it with an Wemos D1 Mini to

which a NS-RS232 was attached. Tasmota was installed and configured to operate on GPIO12 and

GPIO14 as s software serial bridge at 9600 baud. The hardware unit is shown in Figure 381. The setup

of the IP to Serial bridge is shown in Figure 382.

Page 675

Figure 381 IP Serial Hardware

Page 676

Figure 382 IP Serial Bridge Configuration

Page 677

With this configuration the serial data is delivered in MQTT payloads in the RESULT topic such as:

IPSerial/RESULT = {"SSerialReceived":{"T":"Mail","P":{"hb":1,"temp":126}}

The Odroid C1 and EB32 were mounted in a repurposed Costco Chocolate Raisin container shown in

Figure 383. An angle grinder was used to slice slots in the lower side for ventilation. These are not

visible in figure as they are located at the bottom so that they would not be affected by rain. A drill was

used to penetrate the bottom for antenna and power cable penetration. A scrap wood bock was used to

provide a physical barrio between EB32 and C1. A screw was use in the center of the lid to mount to a

tree near the power source. It was snug but still allowed the lid to spin to engage the remainder of the

container.

Figure 383 Install of Mailbox Notification Interface

Page 678

The second fielding I used an Orbit irrigation enclosure so the electronics is out of sight. This enclosue

contained a power receptacle so the power strip was no longer needed and the connection has better

protection from the rain.

Figure 384 Orbit Irrigation Enclosure for Weatherproofing

The Orbit enclosure has provisions for wiring, but not for ventilation to dissipate heat. To deal with this I

added a small fan

https://www.amazon.com/gp/product/B07VYRWC3F/ref=ppx_yo_dt_b_asin_title_o09_s00?ie=UTF8&p

sc=1 . The power to the fan was provided by the same power source as the EByte with a bimetal switch

connected in series so it ran when the temperature was about 30C. A higher temperature switch point

may be more appropriate in warmer climates since the electronics should withstand warmer

surrounding.

The 12VDC power for the fan and Ebyte E32 was provided by a wallwart. Power for the Odroid C1 is

from the 5VDC USB plug in the power receptacle. This style of receptical avoided the need for the USB-

5VC plug that was used in the original mounting with a powerstrip.

Within the Odroid C1 are three packages. Zigbee2MQTT interfaces the CC2531 and delivers the changes

of the mailbox sensor via MQTT. Mosquitto was installed as the MQTT broker. This was not the original

choice, but became the most convenient as Mosquitto was an easy install option via DietPi. A .NET

Exhaust Fan
Bimetal switch

CC2531 Zigbee

Odroid C1

https://www.amazon.com/gp/product/B07VYRWC3F/ref=ppx_yo_dt_b_asin_title_o09_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B07VYRWC3F/ref=ppx_yo_dt_b_asin_title_o09_s00?ie=UTF8&psc=1

Page 679

application was developed (LORA.exe) to subscribe to MQTT topics delivered by Zigbee2MQTT and

convert the message to Serial for communication via LoRa.

There were various issues on the initial installation so diagnostics were added to LORA.exe to help

understand the issues that existed. A heartbeat was added to confirm the integrity of the LoRa link.

Two-way communication via LoRa was not introduced as this added another potential failure mode and

I did not feel there was sufficient benefit. I also had only 100 mw at the HS side of the LoRa

communication so a lack of connection could easily be attributed to a weak transmit signal.

LoRa.exe communicates using JSON payload. Figure 385 provides a snapshot that encompasses a period

of time that includes multiple open/close of the mailbox lid and the heartbeat that is used to confirm

the mailbox monitoring is occurring.

The serial communication is encoded with “T” to be the topic which is always “Mail”. The payload is “P”

with keys of “hb” for periodic heartbeat and “door” and “link” for the open/close position of the

mailbox lid and the zigbee link quality between the sensor and the CC2531. A link of over 100 is

reported when the two units are next to each other. In this case the two had a separate of about 50 ft.

After this screenshot the battery status was also added. When the vibration sensor was used the key

reported was “y” for the Y axis position that was typically 1 to 89 in my testing.

LoRa is a low bandwidth technology. LORA.exe assured the bandwidth was not exceeded by shorthand

notation of the message payload and limiting messages to a rate of one per two seconds. A standard

LoRa message can be no more than 56 characters.

Figure 385 Mailbox Serial Communication History

With HS an event is setup to illuminate the Mail LED on the notification sign when mcsMQTT provides

the status indication that the Mail door is at 0 (open) state. This LED remains illuminated until the IR

remote is used to change the LED color from red to blue on the sign. The notification sign is described in

Section 20.11. The Mail indication LED was added below the Reminder LED of Figure 303.

Page 680

The HS setup of the device for mail status and reporting to illuminate the Notification frame is shown

below. The status values are the LED RGB hex values that control the Notification frame. Blue indicates

normal. Red indicates mailbox opened. Yellow indicates that the heartbeat has been lost.

Figure 386 Homeseer Mail Setup

Page 681

20.24 Alexa Controlled IR
There are many projects that use ESP or RPi for IR send and receive. Tasmota has rich IR support so this

is the avenue that I took for my IR desires. The particular use case is to use Alexa to request equipment

change that is performed with IR. In particular to switch the video input source on a Samsung television

between HDM1 which is the normal settop box input and HDM3 which is connected to Fire TV stick. The

Fire TV stick for this purpose is used to show local camera video stream.

The desired operation is to request Alexa to view a particular camera (e.g. Alexa, show road) and to

switch the TV input to HDMI3. An Alexa routine would be the choice to do this, but it appears that the

“show” verb for video streaming cannot be used in routines. This means two Alexa commands are

needed. One to select the camera for Fire TV stick and the second to switch the input source of the TV.

The hardware configuration is based upon the schematic from https://github.com/vsimonaitis/ESP8266-

MQTT-IR-Blaster and is shown in Figure 390. The device used was a Wemos D1 mini rather than

NodeMCU. The resistor values were changed to match the IR LED that was used.

Figure 387 IR Blaster Case/Mount

Tasmota 8.4.0.3 was installed and configured initially as shown in Figure 388. The prototype

development contained both IR Receive and IR Send and did not have success with reading what was

being sent. A second ESP8266 was used where the second was for receive only and that was successful

to collect IR codes from the remotes that were being emulated with this project. The IR receiver could

be installed on the same unit as long as simultaneous transmit and receive were not done. The receiver

was excluded in the production unit since the use case did not include IR translation.

TV HDMI input select and AV Receiver Volume are the two functions being performed by Alexa. The

volume control is for a different use case, but uses the same hardware and firmware. Tasmota has HUE

emulation so two dummy lights were setup. This is shown in Figure 389. This allows Alexa, Turn On/Off

Camera that will be interpreted as HDMI3 and HDMI1 IR control via Tasmota rules. It also allows Alexa,

Turn On/Off Volume which is interpreted as Volume Up and Volume Down in Tasmota rules. An Alexa

https://github.com/vsimonaitis/ESP8266-MQTT-IR-Blaster
https://github.com/vsimonaitis/ESP8266-MQTT-IR-Blaster

Page 682

routine could also be setup to allow the friendlier Alex, Volume Up/Down. To adequately support a

combination of Tasmota rules and Alexa a source code mod was made to 8.4.0.3 so that every request

looks to the rule engine as if it is a change in state of the relay so the rule is triggered and the IR

command is executed.

The particular Tasmota rule used for the HDMI input select is Rule 1. The volume is Rule 2 where two IR

pulse streams are sent to change the volume two notches.

Rule1

 ON Power1#state=1 DO IRSend

{“Protocol”:”SAMSUNG”,”Bits”:32,”Data”:0xE0E043BC,”DataLSB”:0x0707C23D

,”Repeat”:0} ENDON

 ON Power1#state=0 DO IRSend

{“Protocol”:”SAMSUNG”,”Bits”:32,”Data”:0xE0E09768,”DataLSB”:0x0707E916

,”Repeat”:0} ENDON

Rule2

 ON Event#volumeUp DO Backlog IRSend

{“Protocol”:”PIONEER”,”Bits”:64,”Data”:0xA55A50AFA55A50AF,”DataLSB”:0x

A55A0AF5A55A0AF5,”Repeat”:0}; Delay 5 ENDON

 ON Power2#state=1 DO Backlog Event volumeUp; Event volumeUp ENDON

 ON Event#volumeDn DO Backlog IRSend

{“Protocol”:”PIONEER”,”Bits”:64,”Data”:0xA55AD02FA55AD02F,”DataLSB”:0x

A55A0BF4A55A0BF4,”Repeat”:0}; Delay 5 ENDON

 ON Power2#state=0 DO Backlog Event volumeDn; Event volumeDn ENDON

Backlog Rule1 ON; Rule2 ON

In copy/paste format the rules are:

Rule1 ON Power1#state=1 DO IRSend

{"Protocol":"SAMSUNG","Bits":32,"Data":0xE0E043BC,"DataLSB":0x0707C23D,"Repeat":0} ENDON ON

Power1#state=0 DO IRSend

{"Protocol":"SAMSUNG","Bits":32,"Data":0xE0E09768,"DataLSB":0x0707E916,"Repeat":0} ENDON

Rule2 ON Event#volumeUp DO Backlog IRSend

{"Protocol":"PIONEER","Bits":64,"Data":0xA55A50AFA55A50AF,"DataLSB":0xA55A0AF5A55A0AF5,"Repe

at":0}; Delay 5 ENDON ON Power2#state=1 DO Backlog Event volumeUp; Event volumeUp ENDON ON

Event#volumeDn DO Backlog IRSend

{"Protocol":"PIONEER","Bits":64,"Data":0xA55AD02FA55AD02F,"DataLSB":0xA55A0BF4A55A0BF4,"Repe

at":0}; Delay 5 ENDON ON Power2#state=0 DO Backlog Event volumeDn; Event volumeDn ENDON

Backlog Rule1 ON; Rule2 ON

Page 683

Figure 388 IR Sender Tasmota Configuration

Page 684

Figure 389 Alexa IR Control Setup

Page 685

Figure 390 IR Schematic

8 ohms

Wemo D1 Mini

IR333-A

1 Amp Surge

Page 686

Figure 391 IR Receive Tasmota Configuration

In my case I used a IR Receiver that came with a LED strip and repurposed it for this use. If a new device

is needed then it would be a TSOP 4838 or similar that has as three wires. Two for power and ground

and the other is the data wire that is connected to the selected GPIO of the ESP8266. In my case if the

GPIO14 such as is shown in Figure 390.Presence Detection via Ultrasonic Distance Measurement

The objective of the project is to determine when a vehicle is parked in the garage. The strategy

employed is use of a sensor that measures distance to an obstruction. The device that was reused from

a prior project is the MaxBiotix EZ1 shown in Figure 392. It can be interfaced via serial or analog. The

microcontroller selected is the Wemos D1 Mini. Either interface method could be used, but the analog

involved the fewest wires and setup so it was selected.

Page 687

Figure 392 MaxBotix Ultrasonic Range Sensor

The device was placed inside a 3D-printed case and mounted on the garage wall pointing to the front of

the car. Power was supplied by USB power cube plugged into a nearby power outlet.

 If the distance becomes greater than 4 ft then the vehicle is no longer in the garage. This corresponds

to an analog reading of 200’ish. Normally the front of the car distance is near 100. When out of the

garage the distance to the closed garage door reads around 600. Open garage door provides similar

larger values with more variability.

Tasmota was installed and configured with ADC for sensor and a virtual relay output to facilitate MQTT

reporting of the two states of presence and non-presence as shown in Figure 393.

Stock Tasmota binary that was compiled to allow expression can be used, but a source code

modification was made to reduce the amount of MQTT reporting done as rules are evaluated. With this

modification the MQTT rules reporting is only done for Tasmota log levels for MQTT of INFO or higher. I

set MQTT logging at NONE.

Page 688

Figure 393 Tasmota Range Finder Sensor Configuration

Rules are used to convert analog distance measurement into one of two states. Two filtering

algorithms were used. One is an averaging and the other is a retriggereable one-shot.

Page 689

Averaging rule has the effect of throwing out spurious measurements and require the preponderance of

measurements to exist for more than 60 seconds. This is done with an up/down counter that is run

every two seconds. When the up count reaches 31 it changes the relay to the OFF state and limits

counting to range of 30 to 0. When it reaches 0 it changes the relay to ON and limits the counting to

range 1 to 31. The rule to accomplish this is shown below:

rule1 ON system#boot DO backlog var1 1;var2 31;var3 1;var4 0;ruletimer1 1 ENDON

ON Analog#A0div10>20 DO var4=1 ENDON

ON Analog#A0div10<=20 DO var4=-1 ENDON

ON rules#timer=1 DO backlog event CNT=%var1%; event DIST=%var4%;ruletimer1 1 ENDON

ON event#DIST DO var1=%var1%+%var4% ENDON

ON event#CNT>%var2% DO var1=%var2% ENDON

ON event#CNT<%var3% DO var1=%var3% ENDON

ON event#CNT>30 DO backlog var2=29;var1=29;var3=0;power1 0 ENDON

ON event#CNT<1 DO backlog var2=31;var1=2;var3=2;power1 1 ENDON

Rule1 1

Tasmota rules are organized around trigger events. The events used in this rule consist of the following

system#boot occurs at startup and in the event the variables are initialized and the periodic

timer is started

ruletimer1 is used to generate the sampling interval of two seconds to be used for incrementing

or decrementing the up/down count filter. Var1 is used for this counter. The timer is setup for

one second, but as setup it occurs every two seconds.

Analog#A0div10 occurs when the ADC has a change of 1% in the range finder reading. Two

event triggers are used based upon the reading being above or below the present/away ADC

reading. When above the threshold the filter count direction (var4) is set positive. It is set

negative when below the threshold.

DIST is raised by ruletimer1 every two seconds and captures the Var4 value. The DIST event is

used to increment or decrement Var1 which is the current count of the up/down counter filter.

Since Var4 is used directly in the event all that is important is that DIST was raised and the value

of DIST is not important. %value% could have been used rather than %var4% in the DIST event

expression.

CNT is also raised by ruletimer1 every two seconds. It is used to evaluate it the Var1 count has

exceeded a boundary. There are four boundary cases. Two cases limit Var1 so a max (Var2) and

min (Var3) are not exceeded by the counter. This assures that the counter is latched at its limits

until the distance measurement changes to the other direction. The other two cases are to

change the relay when the up/down counter reaches the opposite limit. When the relay

position is changed the boundary limits Var2 and Var3 are adjusted so they are setup to detect

when the direction of count changes.

Page 690

The above rule is somewhat complex and is the one that was finally implemented. There was much

learning about the event-nature of Tasmota rules and the syntax of ruletimer, variables and expressions

so I wanted to capture the results of that learning.

The initial filter used was the retriggable one-shot. This filter requires that no spurious measurements

are taken for a span of 30 seconds before a change the state of the relay is made. Ruletimer1 is used to

provide the 30 second time interval. Event Analog#A0div10 occurs whenever the range sensor reading

changes by more than 1%. In this event it evaluates if a false reading occurs based upon the ADC

measurement being same as the state of the relay. If a false reading (i.e. reading indicates the relay is in

the same position as the distance measurement indicates) then the one-shot is reset. Only after 30

seconds of ADC measurements that all indicate the relay should be in a different position will the relay

be changed. Two rules are used. One rule is for the relay in the ON position. The other rule is for it

being OFF. The rules toggle as the relay toggles. This could have also been done with variables rather

than multiple rules to keep track of the state.

Rule1 ON Analog#A0div10<20 DO ruletimer1 30 ENDON

ON rules#timer=1 DO backlog power1 off; rule2 1; rule1 0 ENDON

Rule2 ON Analog#A0div10>=20 DO ruletimer1 30 ENDON

ON rules#timer=1 DO backlog power1 on; rule1 1; rule2 0 ENDON

Rule1 1

Page 691

20.25 Sonoff RF and Zigbee Bridges
Itead has released two devices that bridge 433 MHz RF to Wifi and Zigbee to Wifi. Both devices are

reflashable and supported by Tasmota. This means that they can be used as RF and Zigbee to MQTT

bridges.

Both devices are of the same form factor of 2.5” x 2.5” x 0.75”.

Figure 394 Sonoff Zigbee Bridge

Figure 395 Sonoff RF Bridge

The flashing of both devices is a two-step process. The first is to flash the ESP8266 with Tasmota. The

second is to flash the RF/Zigbee radio with compatible firmware. The Sonoff RF is a little more involved.

The Sonoff Zigbee was done in about 15 minutes. See https://tasmota.github.io/docs/devices/Sonoff-

RF-Bridge-433/ for the RF Bridge. See https://zigbee.blakadder.com/Sonoff_ZBBridge.html for the

Zigbee Bridge.

20.25.1 Sonoff RF Bridge
Tasmota configuration of the Sonoff RF Bridge consists on only selecting “Sonoff Bridge (25)” as the

device in the Module configuration page. GPIO2,4, 5,12, and 14 show as being available, but not used

unless one does additional hacking. Other WiFi and MQTT setup is also necessary.

https://tasmota.github.io/docs/devices/Sonoff-RF-Bridge-433/
https://tasmota.github.io/docs/devices/Sonoff-RF-Bridge-433/
https://zigbee.blakadder.com/Sonoff_ZBBridge.html

Page 692

When a RF transmission data pattern is recognized a MQTT message is delivered which contains a JSON

Data key where the encoded signal pattern is found. See Figure 396 for a sample of these messages.

The Data field is the unique ID of the sending device.

Figure 396 Sonoff RF Bridge MQTT Payload

There are two ways to use the received payloads. One is map the received pattern into a more

meaningful name as part of the VSP. In this scenario the Control/Status UI should be set to “List”. Edits

of the VSP row is done to give meaningful names to the data pattern. In Figure 397 it shows that two of

the patterns were mapped into a RoadMotion notification.

The HS device status will be populated with value 2 or 4 for these two and its status will show

RoadMotion when these are received. If using the RF as an event trigger then this is an attractive way to

setup mcsMQTT so that the data is documented and triggering done based upon the device.

The downside of this approach is that only the last RF reception will be shown in the HS device. If the

use of the RF data is to keep track of when the last reception of each code occurs then it is desirable to

have one HS device for each RF code. The same triggering can be done on a device-by-device trigger

basis, but in this case the trigger will not be the device with a specific value, but will be that the device

has been updated. The DeviceValue of the device will never change. Only the LastChange property will

change when new messages are received.

To setup this second approach the Edit tab MQTT Subscribe Topic row, “Check to treat JSON key value

as topic” checkbox is used. See Section 4.1.36 for a more complete description. This will result in every

Data value being a separate row on the Association tab table. The ones of interest can then be

associated with a HS device.

An application that was recently implemented is use of the QIACHIP, which is the guts of the four-button

RF keyfobs, to provide notification when a dry contact has been activated from an alarm. The QIACHIP

was described in Section20.17.2.

The QIACHIP provides an encoded 433 MHz message when one of its four inputs is grounded. It accepts

power in the 5V to 24V range. A nice feature of the Dakota receiver to which it was connected is that it

provides a 12V output that is active only after the motion alarm is triggered. I set it up for a 1 second

active after alarm and used it to power the QIACHIP. One of the four Dakota relay outputs was

connected to one of the four QIACHIP inputs. The result is that the message is sent at 433 MHZ when

the motion notification is triggered and the Sonoff RF recognizes the transmission. The bottom line is

that the tiny QIACHIP circuit card can be mounted inside the Dakota receiving station, no external power

needed, and the motion notification is available on the network via MQTT.

Page 693

Figure 397 Sonoff RF VSP Capture

Page 694

20.25.2 Sonoff Zigbee Bridge
The Sonoff Zigbee Bridge is a new device and the Tasmota Zigbee support is in the experimental

classification. Its list of supported devices is smaller than the more mature Zigbee2MQTT (See Section

18) mechanism that uses a RPi or another general-purpose computer rather than the ESP8266 in the

Tasmota implementation.

I would consider it to be a niche solution for cases where a Zigbee device is out of range of the Zigbee

coordinator, yet WiFi coverage does exist. It would also suit very well for the situations where the

location does not already have a Zigbee coordinator and network, but one desires to use a limited

number of Zigbee devices.

Pairing is enabled from Tasmota console or MQTT message ZbPermitJoin 1 MQTT reporting such as

shown in Figure 398 shows the success of the pairing and information about the device that was paired

in the /RESULT topic.

Figure 398 Zigbee Tasmota Discovery Reporting

Periodic reporting occurs in the Tasmota /STATE topic about the ESP8266. Reporting initiated by the

Zigbee device is in the /SENSOR topic. In this case of a Xiaomi Window/Door sensor it provides a

periodic battery status as shown in row 191 of Figure 398. In rows 199 and 200 the reporting of the

contact being made and open. Note it is the Power key in the JSON message that reflects the sensor

state. In essence Tasmota treats it like relay reporting.

Figure 399 Tasmota Zibgee Event Reporting for Window/Door Sensor

A comparison of reporting for the Xiaomi water leak sensor is shown in Figure 400. Note the battery

report is similar and rather than Power, it uses Occupancy as the key to report a water leak. It obviously

believes this is a motion sensor and not a water leak sensor. Being in experimental status these types of

anomalies should be expected.

Page 695

Figure 400 Tasmota Zigbee Event Reporting for Water Leak Sensor

There is no configuration needed for the ESP8266 with the binary that was provided from the Tasmota

site other than customizations for WiFi SSID, MQTT broker and preferred name. The main Tasmota page

reporting is shown in Figure 401.

Figure 401 Tasmota Zigbee Status Page

The Tasmota command ZbName can be used to change 0x123245 to a friendly name for easier

recognition. (e.g. ZbName 0x89AE,WaterLeak). This is similar to changing the .yaml file for zigbee2mqtt.

Page 696

It is nice to see a graphic display of status for battery, WiFi and uptime. To my knowledge it is not

something that exits in other Tasmota binaries. It is not clear why only one “On” status is shown as both

devices have binary status.

Prior to using the Sonoff Zigbee Bridge, I used the same coordinator hardware that was used for

Zigbee2MQTT. I tried both CC2530 and CC2531. Initially without reflashing the RF radio firmware from

what had been successfully used with Zigbeen2MQTT and then reflashing based upon the latest

information in the Tasmota Zigbee Wiki.

Since I had flashed many of these Zigbee devices in the past I felt comfortable with the flashing again,

but I was never able to achieve success when integrated with a Zigbee-compiled version of Tasmota. In

all cases I would get the report that Tasmota was not able to start the radio.

Page 697

20.26 Carbon Monoxide Detector

Carbon Monoxide sensing is performed with ZE16B sensor that has technical description at

https://www.winsen-sensor.com/d/files/ZE16B-CO.pdf. It is sold by multiple suppliers including

Aliexpress

https://www.aliexpress.com/item/1005002233280950.html?spm=a2g0s.9042311.0.0.52354c4dA9SWef

where quantity 5 was obtained for under $20. Like many gas sensors their effectiveness fades over time

so the recommendation is to replace the sensor every year or two.

The interface provided is a 5VDC UART at 9600 baud. Tasmota does support many serial-based sensors,

but as of version 9.5 it does not support this one. To accommodate this sensor the code for the HXHL

distance sensor was replace with code for the ZE16B. The sensor transmits continuously every second a

nine-byte message of the format shown below. Bytes 4 and 5 contain the reading and Bytes 1 through 7

are used to compute a checksum against which a comparison is made for equality with Byte 8 to assure

the data is valid. The source code is available at http://mcsSprinklers.com/ZE16B.zip

https://www.winsen-sensor.com/d/files/ZE16B-CO.pdf
https://www.aliexpress.com/item/1005002233280950.html?spm=a2g0s.9042311.0.0.52354c4dA9SWef
http://mcssprinklers.com/ZE16B.zip

Page 698

As part of the packaging a 0.96” LCD displayed was added to display the carbon monoxide locally. A

BMP280 was also added which provides pressure measurement as well as temperature measurement.

The temperature is inside-case temperature so is not reflective of ambient room temperature.

https://www.amazon.com/gp/product/B08LYL7QFQ/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&ps

c=1 It is also provided via WiFi using MQTT. A picture of the sensor and display during bench testing is

shown in Figure 402.

Figure 402 ZE16B CO Sensor and LCD During Bench Testing

The normal reading for the sensor is 0 ppm. To excite the sensor for testing a match was used to

generate smoke that had some CO composition. It was several seconds after exposure to the stimulant

before the readings moved off of zero.

The LCD has a rated life of about 1.5 years if fully illuminated. I suspect that with lower brightness levels

and also the relatively sparse text being displayed this lifetime could be much longer. The approach

taken with this implementation is to turn off the display unless a non-zero CO level is being reported.

After power-up the LCD will be showing the CO level for 60 seconds so there is some feedback to know

the display is functional (i.e., power on self-test). Rules in Tasmota were used to achieve this display

management logic.

Two Rules were employed. Rule2 handles the power-up, reporting of CO level changes and formatting

for the display. Rule3 handles events to detect CO level changes and when the display should be turned

on and off.

var1 - format for the display with CO and ppm at the top in size 2 and 1 fonts

var2 - format for the display of the current and max CO readings in size 3 font

var3 - current CO reading

var4 - max CO reading

ruletimer1 - event to mark 2 seconds after boot. On expiration it turns on the display

https://www.amazon.com/gp/product/B08LYL7QFQ/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B08LYL7QFQ/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1

Page 699

ruletimer2 - event to mark 60 seconds after a CO level of 0 has been detected so display can be turned

off

power – display power control

Rule 2 narrative

On boot initialize variables and timers then turn on rule3. When CO level becomes 0 then set timer to

turn off display in 60 seconds as well as capture the current CO level in var3. If CO level is greater than

max then update the max in var4. If the CO level changes, then update display and publish the current

and max values. Assure display is on.

rule2 on System#Boot do backlog

var1 [zs2x30y1]CO[s1x70y10]ppm;

var2[s3x1y30];

var3 0;

var4 0;

rule2 5;

rule3 4;

ruletimer1 2;

ruletimer2 60;

power 1;

rule3 1 endon

on ZE16B#CO<1 do backlog

var3 0;

ruletimer2 60 endon

on ZE16B#CO>%var4% do var4 %value% endon

on ZE16B#CO!=%var3% do backlog

DisplayText %var1%%var2%%value%:%var4%;

publish %topic%/SENSOR {"ZE16B":{"CO":%value%,"COMax":%var4%}};

power 1 endon

Rule 3 narrative

On system boot turn off rule3. It will be turned on after rule2 completes the setup. Rule3 is setup to

evaluate continuously and puts the current CO reading in var3. It also contains the logic for when the

two timers expire. Timer1 to show CO level on display two seconds after startup. Timer2 to turn off

power to display after one minute following power-up or when CO level returns to 0.

rule3 on System#Boot do rule3 0 endon

 on ZE16B#CO>0 do var3 %value% endon

 on rules#Timer=2 do power 0 endon

 on rules#Timer=1 do backlog

DisplayText %var1%%var2%%var3%:%var4%;

publish %topic%/SENSOR {"ZE16B":{"CO":%value%,"COMax":%var4%}};

 endon

Page 700

Rules cut/paste

rule2 on System#Boot do backlog var1 [zs2x30y1]CO[s1x70y10]ppm;var2[s3x1y30];var3 0;var4 0;rule2

5;rule3 4;ruletimer1 2;ruletimer2 60;Power 1;rule3 1 endon on ZE16B#CO<1 do backlog var3

0;ruletimer2 60 endon on ZE16B#CO>%var4% do var4 %value% endon on ZE16B#CO!=%var3% do

backlog DisplayText %var1%%var2%%value%:%var4%;publish %topic%/SENSOR

{"ZE16B":{"CO":%value%,"COMax":%var4%}};power 1 endon

rule3 on System#Boot do rule3 0 endon on ZE16B#CO>0 do var3 %value% endon on rules#Timer=2 do

power 0 endon on rules#Timer=1 do backlog DisplayText %var1%%var2%%var3%:%var4%; publish

%topic%/SENSOR {"ZE16B":{"CO":%value%,"COMax":%var4%}} endon

Other Tasmota configuration

gpio4 640 IC SDA for LCD and pressure/temperature sensor

gpio5 608 IC SCL for LCD and pressure/temperature sensor

gpio12 4608 ZE16B sensor serial input on GPIO12

timezone -7 Pacific timezone

setoption8 1 Use F for temperature

rule2 1 Enable initial rule

backlog gpio4 640;gpio5 608;gpio12 4608;timezone -7;setoption8 1;rule2 1

The Tasmota configuration uses SDA and SCL pins for the LCD and BMP280 and GPIO12 for the Software

Serial UART. The Software Serial was used to free up the Hardware Serial (GPIO3) for development

testing

Page 701

Figure 403 Tasmota Module Configuration for CO Sensing

The ZE16B sensor’s specified voltage is 5VDC. It swings its UART to the rails so would produce too high a

voltage for the ESP8266 GPIO12. A level shifter could be used, but a simpler solution is a voltage divider

connected as shown below.

Page 702

Periodic reporting is setup on the Logging page of Tasmota to be 300 seconds (5 minutes). The base

Topic for the device was setup to be CO on the Tasmota MQTT page. The MQTT Broker IP address was

also setup on the Tasmota MQTT page. The data reported are two JSON payloads such as:

CO/STATE = {"Time":"2021-10-

15T11:35:29","Uptime":"0T00:10:09","UptimeSec":609,"Heap":28,"SleepMode":"Dynamic","Sleep":50,"

LoadAvg":19,"MqttCount":1,"POWER":"OFF","Wifi":{"AP":1,"SSId":"U","BSSId":"78:8A:20:84:48:1D","Ch

annel":11,"Mode":"11n","RSSI":64,"Signal":-68,"LinkCount":1,"Downtime":"0T00:00:03"}}

CO/SENSOR = {"Time":"2021-10-

15T11:35:29","BMP280":{"Temperature":89.0,"Pressure":1024.0},"ZE16B":{"CO":0},"PressureUnit":"hPa

","TempUnit":"F"}

The information of interest is the CO level, max CO level, and potentially the pressure. These can be

associated to HS devices on the Association tab such as shown in Figure 404. The default reporting for

pressure is hPa. The Edit tab of MQTT page in mcsMQTT can use the expression textbox to convert to

other units such as $$PAYLOAD:* 0.02953 to get to inHg units.

Figure 404 CO Sensor Associations

Page 703

20.27 Bluetooth Button for RF Control
This is a use-case where a fob that transmits 433 MHz to control the feed on a pickleball machine is

replaced by a Bluetooth button. The motivation is that the RF fob was not always reliable and the

ergonomics were poor. It has four small button where only one is being used; an antennae that needed

to be extended to use and then returned when placed in pocket; no moisture resistance for outdoor

use; and a sliding button cover that made use awkward.

Shelly makes an ideal button for this application called the Tough-1. It had none of the downsides of the

RF fob, but the Shelly button uses Bluetooth and the pickleball machine only understands RF. It also will

be used more than 50 ft from the machine and Bluetooth will not be reliable at this range.

To bridge the gap, a Shelly mini Gen 3 switch was installed inside an outdoor junction box receptacle

behind the existing plug.

This location will reduce the needed Bluetooth range to under 30 ft. The switch function was not used

so wiring needed was only the two power wires. This results in a Bluetooth to WiFi bridge with

communications available on the home network. Each Shelly Tough-1 button push is now available as a

momentary change in a HS Device Feature.

Page 704

A Broadlink RM4 PRO is used to bridge the WiFi to 433 MHz RF to complete the communication to the

pickleball machine. The original RF fob was used to teach the RM4 PRO the RF code. This code was then

assigned to a HS Device Feature.

With both a trigger source and an action target available, a HS event was created to complete the link.

While there are several hops along this route, there was no noticeable difference in the time between

button push and pickleball machine action when using either the original RF fob or the Shelly Tough-1.

Another option considered was to implement the event logic in the Shelly Mini where reception of the

Bluetooth MQTT message would automatically send the Broadlink MQTT message. Since the Broadlink

integration uses HS I did not see an advantage of this alternate approach. While technically feasible to

send socket messages from the Shelly Mini to the Broadlink RM4, the integration effort did not provide

benefit over the more maintainable HS Event.

Page 705

The fob, button, junction box, and pickleball machine are shown below for context. The junction box is

at the middle court position so distance shown is the maximum in practical use. As a note, Ubiquiti

Nanostations are used to extend the WiFi range from the house to the court location.

Page 706

21 SDR and RTL-433
SDR is then handle for Software Defined Radio which is a flexible solution of a generic RF receiver for

which tuning parameters are controlled by software. Diagnostic and decoding tools have been built

around the SDR including SDR Sharp for general viewing and RTL-433 for decoding digital data. In the

RTL-433 case the decoded data can be put on the network using MQTT protocol.

Figure 405 Typical SDR Hardware Dongle

The software can be run on either Windows or Linux. A ground-up RPi install is described below where

the MQTT component is the Mosquitto client. A Python MQTT client, and likely others, is also available

Build and install rtl_sdr

cd ~

sudo apt install pkg-config
sudo apt-get install git git-core cmake libusb-1.0-0-dev build-essential

git clone git://git.osmocom.org/rtl-sdr.git

cd rtl-sdr

sudo mkdir build

cd build

sudo cmake ../ -DINSTALL_UDEV_RULES=ON

sudo make

sudo make install

Page 707

sudo ldconfig

cd ~

sudo cp ./rtl-sdr/rtl-sdr.rules /etc/udev/rules.d/

sudo reboot

create file no-rtl.conf

sudo nano /etc/modprobe.d/no-rtl.conf

add these three lines

blacklist dvb_usb_rtl28xxu

blacklist rtl2832

blacklist rtl2830

sudo apt-get install doxygen

sudo reboot

lsusb

rtl_test -t

Build and install rtl_433

sudo apt-get install libtool libusb-1.0.0-dev librtlsdr-dev

#rtl_sdr doxygen

git clone https://github.com/merbanan/rtl_433.git

cd rtl_433

sudo mkdir build

cd build

sudo cmake ../

sudo make

sudo make install

Install mosquito client

sudo apt-get install -y mosquitto mosquitto-clients

As an alternate to Mosquitto client the following Python script can be installed. This is not needed if

Mosquitto client is installed.

Install python3/pip

sudo apt-get update

sudo apt-get -y install python3-pip

Get rtl433-to-mqtt script

https://github.com/mverleun/RTL433-to-mqtt (download zip or clone code). I

placed mine in the same folder as rtl_433

Extract the file config.py.example to config.py and setup MQTT environment.

Extract rtl2mqtt.py

Execute in terminal window with "python3 rtl2mqtt.py"

Using the Python script a MQTT set of data will look like Figure 406 for the case of a RF Remote button

push.

Page 708

Figure 406 Python Script MQTT Message Content

When using Mosquitto client the following command is used to start RTL_433 where the blue font will

be customization based upon your local environment and preference for start of the topic. The green

font is the frequency being scanned. While shown as three lines below it is a single command line.

rtl_433 –f 310.0M -F

mqtt://192.168.0.30:1883,retain=0,devices=SDR[/type][/model][/subtyp

e][/channel:0][/id]

X10 RF at 310 Mhz is not normally decoded, but can be enabled in one of two ways. One is specifying

only specific protocols using the –R 22 key in the start command. Using this approach additional –R keys

will need to be added if other protocols at 310 MHz are also going to be decoded. See list at

https://github.com/merbanan/rtl_433. The other approach is to edit the source before the make/build

so that X10 RF is enabled by default. In the RTL_433/srd/devices folder will be the file x10_rf.c and at

the bottom will be the “.disabled” property that should be changed from 1 to 0 to enable it as a default.

r_device X10_RF = {

.name = "X10 RF",

.modulation = OOK_PULSE_PPM,

.short_width = 500, // Short gap 500µs

.long_width = 1680, // Long gap 1680µs

.gap_limit = 2800, // Gap after sync is 4.5ms (1125)

.reset_limit = 6000, // Gap seen between messages is ~40ms so let's get them

individually

.decode_fn = &x10_rf_callback,

.disabled = 0,

.fields = output_fields,

};

Multiple topics will be transmitted for each RF decode event and it is likely that the same set of

messages will be repeated multiple times as digital RF transmissions are often repeated to increase

reception success. An example of the X10 button and of two keychain remote buttons is shown below.

Those that are likely of interest to map into HS devices are shown in red font.

https://github.com/merbanan/rtl_433

Page 709

X10 Palmpad B14 ON

Received Topic: SDR/X10-RF/B/14/time Payload: 2020-10-02 11:30:06

Received Topic: SDR/X10-RF/B/14/id Payload: 14

Received Topic: SDR/X10-RF/B/14/channel Payload: B

Received Topic: SDR/X10-RF/B/14/state Payload: ON

Received Topic: SDR/X10-RF/B/14/data Payload: -534839041

Remote B Button

Received Topic: SDR/Generic-Remote/0/6349/time Payload: 2020-10-02 11:58:10

Received Topic: SDR/Generic-Remote/0/6349/id Payload: 6349

Received Topic: SDR/Generic-Remote/0/6349/cmd Payload: 114

Received Topic: SDR/Generic-Remote/0/6349/tristate Payload: 0ZX0101ZZ10X

Remote A Button

Received Topic: SDR/Generic-Remote/0/6349/time Payload: 2020-10-02 11:59:42

Received Topic: SDR/Generic-Remote/0/6349/id Payload: 6349

Received Topic: SDR/Generic-Remote/0/6349/cmd Payload: 113

Received Topic: SDR/Generic-Remote/0/6349/tristate Payload: 0ZX0101ZZ10Z

The X10 palmpad was recorded when tuned to 310 Mhz. The keychain remote was at 433.92 Mhz. This

means either two SDR dongles are needed to do it simultaneously. An attempt was made to hop

between the two frequencies at the fastest rate possible, but this resulted in missing a high percentage

of the RF transmissions

rtl_433 –f 310.0M –f 433.92M –H 1s -F

mqtt://192.168.0.30:1883,retain=0,devices=SDR[/type][/model][/subtype]

[/channel:0][/id]

A more concise 433.92 MHz decode is like

rtl_433 -F mqtt://192.168.0.16:1883,retain=0,devices=SDR[/type][/model][/subtype]

Page 710

If one desires to scan multiple frequencies then multiple SDR will be needed and multiple instances or
rtl_433 will be started. The SDR dongle is a little larger than a typical USB dongle which means that two
cannot be plugged directly into the RPi. A USB extension cable can be used for the second dongle. The
“d” parameter is used when starting rtl_433 to identify which SDR dongle is being used. For example, to
run both 433 and 310 then the following would be used:

rtl_433 -d 0 -F mqtt://192.168.0.16:1883,retain=0,devices=SDR[/type][/model][/subtype]

rtl_433 –f 310.0M -d 1 -F

mqtt://192.168.0.16:1883,retain=0,devices=SDR[/type][/model][/subtype]

For the Ecowitt 915 MHz on the second SDR interface it would be

rtl_433 -d 1 -s 250K -F

mqtt://192.168.0.16:1883,retain=0,devices=SDR[/type][/model][/subtype]
-f 915M

Systemd can be used to run rtl_433 at boot on Linux with something like the following:

The rtl_433.service file that is located in /etc/systemd/system contains:

[Unit]
Description=Decoding of SDR 433 Mhz devices
After=network.target

[Service]
ExecStart=/home/pi/rtl_433/autostart_rtl433
Restart=on-failure
TimeoutStopSec=90

[Install]
WantedBy=multi-user.target

autostart_rtl433 fie located at /home/pi/rtl_433/ is made executable and contains:

#!/bin/sh
export LANG=en_US.UTF-8
cd /home/pi/rtl_433/build
sleep 10s

rtl_433 -F mqtt://192.168.0.30:1883,retain=0,devices=SDR[/type][/model][/subtype]

One time command to enable it

sudo systemctl enable rtl_433.service

If two frequencies are to be run with two dongles then a second service can be setup such as below for

910 MHz:

Page 711

The second rtl_910.service file that is located in /etc/systemd/system contains:

[Unit]
Description=Decoding of SDR 910 Mhz devices
After=network.target

[Service]
ExecStart=/home/pi/rtl_433/autostart_rtl433_910
Restart=on-failure
TimeoutStopSec=90

[Install]
WantedBy=multi-user.target

autostart_rtl433_910 fie located at /home/pi/rtl_433/ is made executable and contains:

#!/bin/sh
export LANG=en_US.UTF-8
cd /home/pi/rtl_433/build
sleep 10s

rtl_433 -f 910M -d 1 -F

mqtt://192.168.0.30:1883,retain=0,devices=SDR[/type][/model][/subtype]

One time command to enable it

sudo systemctl enable rtl_910.service

Page 712

22 Pentair Pool Controller Integration
There are multiple 3rd party implementations to automate the Pentair pool controller. This section

describes the one that runs on a RPi with a USB/RS-485 adapter running nodejs with extensions for

MQTT. It is described at https://www.troublefreepool.com/thre...-guide.218514/. The gihub link

is https://github.com/tagyoureit/nodejs-poolController and the MQTT extension is enabled per

https://github.com/tagyoureit/nodejs...ns-in-2.0#mqtt.

Pool controller is an integration of nodejs-poolController with HS. Nodejs-poolController is the glue

between Pentair pool equipment using Intellicenter, Intellitouch and EasyTouch or standalone

equipment. It is described at tagyoureit/nodejs-poolController: An application to control pool

equipment from various manufacturers. (github.com). The physical interface is RS-485 to the pool

equipment that is used by nodejs-poolController. The HS interface to nodejs-poolController is ethernet.

The development thread for pool controller integration with HS is at

https://forums.homeseer.com/forum/lighting-primary-technology-plug-ins/lighting-primary-technology-

discussion/mcsmqtt-michael-mcsharry/1425619-poolcontroller-homeseer-interface-with-

mcsmqtt/page12. Most of the development work for this integration was done by miamijerry on the HS

Message Board. If one has difficulties then it may be helpful to scan this thread.

After installation the following is done to configure with MQTT operation:

Configure the following items under interfaces in config.json.
Open terminal and paste
sudo nano /home/pi/nodejs-poolController/config.json

"mqtt": {
 "name": "MQTT",
 "type": "mqtt",
 "enabled": true"
 "fileName": "mqtt.json",
 "globals": {},
 "options": {
 "protocol": "mqtt://",
 "host": "192.168.0.103",
 "port": 1883,
 "username": "",
 "password": "",
 "rootTopic": "pool",
 "retain": true,
 "qos": 0

Notes, change the following three items;
“true” enables MQTT client in poolController.
Host “IP” is the IP address of the MQTT broker ie. mcsMQTT,
RootTopic “pool” is used to sort mqtt topics.

https://www.troublefreepool.com/threads/pentair-intellicenter-pool-control-dashboard-instructional-guide.218514/
https://github.com/tagyoureit/nodejs-poolController
https://github.com/tagyoureit/nodejs-poolController/wiki/Bindings-Integrations-in-2.0#mqtt
https://github.com/tagyoureit/nodejs-poolController
https://github.com/tagyoureit/nodejs-poolController
https://forums.homeseer.com/forum/lighting-primary-technology-plug-ins/lighting-primary-technology-discussion/mcsmqtt-michael-mcsharry/1425619-poolcontroller-homeseer-interface-with-mcsmqtt/page12
https://forums.homeseer.com/forum/lighting-primary-technology-plug-ins/lighting-primary-technology-discussion/mcsmqtt-michael-mcsharry/1425619-poolcontroller-homeseer-interface-with-mcsmqtt/page12
https://forums.homeseer.com/forum/lighting-primary-technology-plug-ins/lighting-primary-technology-discussion/mcsmqtt-michael-mcsharry/1425619-poolcontroller-homeseer-interface-with-mcsmqtt/page12

Page 713

Pool controller has the ability to send much information about the pool controller and at a rate of one or

two hertz. This is in excess of the amount of information that is needed in HS and will overload

mcsMQTT/HS. Two methods exist to reduce the volume of traffic. The first is with mcsMQTT that will

change the subscribe list to only those topics it uses for the default set of devices it creates in HS. This is

on the Client Tab as shown in Figure 407. This list is built when the topic starting with “pool/” is first

observed. It will also select the third radio to listen for only this list of topics. For those that use MQTT

for more than pool controller then the radio needs to be changed to the top selection as shown in

Figure 407. Alternately the subscription list for Topic Discovery setting can be augmented by explicitly

adding the other MQTT topis that are being used.

Figure 407 Pool Control MQTT Subscribe List

The second and preferred method is to limit the topics being published by the pool controller. This is

with edit of the binding on nodejs to enable a specific list. This binding may change over time. The

snapshot used for the initial integration in shown in Table 13.

Table 13 Pool Controller Binding Snapshot

{

 "context": {

 "name": "MQTT",

 "options": {

 "formatter": [

 {

 "transform": ".toLowerCase()"

 },

 {

 "regexkey": "\\s",

 "replace": "",

 "description": "Remove whitespace"

 },

 {

 "regexkey": "\\/",

 "replace": "",

 "description": "Remove /"

 },

 {

 "regexkey": "\\+",

 "replace": "",

 "description": "Remove +"

 },

 {

 "regexkey": "\\$",

 "replace": "",

 "description": "Remove $"

 },

 {

 "regexkey": "\\#",

 "replace": "",

Page 714

 "description": "Remove #"

 }

],

 "rootTopic-DIRECTIONS": "You can override the root topic by renaming

_rootTopic to rootTopic",

 "_rootTopic": "@bind=(state.equipment.alias).replace(' ','-

').replace('/','').toLowerCase();",

 "clientId": "@bind='mqttjs_njsPC_'+Math.random().toString(16).substr(2, 8);"

 }

 },

 "events": [

 {

 "name": "config",

 "description": "Don't flood the MQTT bus.",

 "enabled": false

 },

 {

 "name": "controller",

 "description": "Emit time every minute",

 "enabled": true,

 "topics": [

 {

 "topic": "state/time",

 "message": "@bind=data.time;",

 "filter": "@bind=data.status.percent === 100;"

 }

]

 },

 {

 "name": "circuit",

 "description": "Populate the circuits topics",

 "topics": [

 {

 "topic": "state/circuits/@bind=data.id;/@bind=data.name;",

 "message":

"{\"id\":@bind=data.id;,\"isOn\":@bind=data.isOn?'\"on\"':'\"off\"';}",

 "description": "Bind 'on'/'off' as a message to the state topic."

 },

 {

 "topic": "state/circuits/@bind=data.id;/@bind=data.name;/isOn/string",

 "message": "@bind=data.isOn?'on':'off';",

 "description": "Bind 'on'/'off' as a message to the topic.",

 "enabled": false

 },

 {

 "topic": "state/circuits/@bind=data.id;/@bind=data.name;/isOn/boolean",

 "message": "@bind=data.isOn;",

 "description": "SAMPLE: Bind the isOn as a message to the topic.",

 "enabled": false

 },

 {

 "topic": "state/circuits/@bind=data.id;/@bind=data.name;/lightingTheme",

 "message": "{\"lightingTheme\":@bind=data.lightingTheme;}",

 "description": "SAMPLE: Bind the lighting theme to the topic.",

 "filter": "@bind=data.type.isLight === true;"

 },

 {

 "topic":

"state/circuits/@bind=data.id;/customTopicFormatter/@bind=data.name;/isOn",

 "message": "@bind=data.isOn;",

 "description": "SAMPLE: Bind the isOn as a message to the topic with a custom

replacer, qos and retain setting.",

 "formatter": [

 {

 "transform": ".toLowerCase()"

 },

Page 715

 {

 "regexkey": "\\s",

 "replace": "__",

 "description": "Remove whitespace and replace with __"

 },

 {

 "regexkey": "\\/",

 "replace": "__",

 "description": "Remove / and replace with __"

 }

],

 "qos": 2,

 "enabled": false

 },

 {

 "topic": "state/circuits/@bind=data.id;/@bind=data.name;/object",

 "message": "@bind=data;",

 "description": "SAMPLE: Bind a JSON object as a message to the topic.",

 "enabled": false

 }

]

 },

 {

 "name": "virtualCircuit",

 "description": "Populate the virtual circuits topics",

 "topics": [

 {

 "topic": "state/virtualcircuits/@bind=data.id;/@bind=data.name;",

 "message":

"{\"id\":@bind=data.id;,\"isOn\":@bind=data.isOn?'\"on\"':'\"off\"';}",

 "description": "Bind 'on'/'off' as a message to the state topic."

 }

]

 },

 {

 "name": "valve",

 "description": "Populate the valve topics",

 "topics": [

 {

 "topic": "state/valve/@bind=data.id;/@bind=data.name;",

 "message":

"{\"id\":@bind=data.id;,\"isOn\":@bind=data.isDiverted?'\"on\"':'\"off\"';,\"isVirtual\":

@bind=data.isVirtual? true: false;,\"pinId\": @bind=data.pinId;}",

 "description": "Bind 'on'/'off' as a message to the valve state topic."

 }

]

 },

 {

 "name": "feature",

 "description": "Populate the features topics",

 "topics": [

 {

 "topic": "state/features/@bind=data.id;/@bind=data.name;",

 "message":

"{\"id\":@bind=data.id;,\"isOn\":@bind=data.isOn?'\"on\"':'\"off\"';}",

 "description": "Bind 'on'/'off' as a message to the state topic."

 }

]

 },

 {

 "name": "temps",

 "description": "Populate the temps topics",

 "topics": [

 {

 "topic": "state/temps/air",

Page 716

 "message": "{\"temp\":@bind=data.air;}",

 "description": "Send air temp."

 },

 {

 "topic": "state/temps/solar",

 "message": "{\"temp\":@bind=data.solar;}",

 "description": "Send solar temp.",

 "filter": "@bind=typeof data.solar === 'undefined';"

 },

 {

 "topic": "state/temps/units",

 "message": "{\"units\":@bind=data.units;}"

 }

]

 },

 {

 "name": "body",

 "description": "Populate the body topic",

 "topics": [

 {

 "topic": "state/temps/bodies/@bind=data.id;/@bind=data.name;",

 "message":

"{\"id\":@bind=data.id;,\"isOn\":@bind=data.isOn?'\"on\"':'\"off\"';}",

 "description": "Bind 'on'/'off' as a message to the state topic."

 },

 {

 "topic": "state/temps/bodies/@bind=data.id;/@bind=data.name;/heatMode",

 "message": "{\"heatMode\":@bind=data.heatMode;}",

 "description": "Send heat mode."

 },

 {

 "topic": "state/temps/bodies/@bind=data.id;/@bind=data.name;/heatStatus",

 "message": "{\"heatStatus\":@bind=data.heatStatus;}",

 "description": "Send heat status."

 },

 {

 "topic": "state/temps/bodies/@bind=data.id;/@bind=data.name;/setPoint",

 "message": "{\"setPoint\":@bind=data.setPoint;}",

 "description": "Send set point."

 },

 {

 "topic": "state/temps/bodies/@bind=data.id;/@bind=data.name;/temp",

 "message": "{\"temp\":@bind=data.temp;}",

 "description": "Send temp."

 }

]

 },

 {

 "name": "chlorinator",

 "description": "Populate the chlorinator topic",

 "topics": [

 {

 "topic": "state/chlorinators/@bind=data.id;/@bind=data.name;",

 "message":

"{\"id\":@bind=data.id;,\"isOn\":@bind=data.isOn?'\"on\"':'\"off\"';}",

 "description": "Bind 'on'/'off' as a message to the state topic."

 },

 {

 "topic": "state/chlorinators/@bind=data.id;/@bind=data.name;/currentOutput",

 "message": "{\"currentOutput\":@bind=data.currentOutput;}",

 "description": "Send current output."

 },

 {

 "topic": "state/chlorinators/@bind=data.id;/@bind=data.name;/poolSetpoint",

 "message": "{\"poolSetpoint\":@bind=data.poolSetpoint;}",

 "description": "Send pool setpoint."

Page 717

 },

 {

 "topic": "state/chlorinators/@bind=data.id;/@bind=data.name;/spaSetpoint",

 "message": "{\"spaSetpoint\":@bind=data.spaSetpoint;}",

 "description": "Send set point."

 },

 {

 "topic": "state/chlorinators/@bind=data.id;/@bind=data.name;/status",

 "message": "{\"status\":@bind=data.status;}",

 "description": "Send status."

 },

 {

 "topic": "state/chlorinators/@bind=data.id;/@bind=data.name;/superChlor",

 "message": "{\"superChlor\":@bind=data.superChlor?'\"on\"':'\"off\"';}",

 "description": "Send superChlor."

 },

 {

 "topic": "state/chlorinators/@bind=data.id;/@bind=data.name;/superChlorHours",

 "message": "{\"superChlorHours\":@bind=data.superChlorHours;}",

 "description": "Send superChlorHours."

 },

 {

 "topic": "state/chlorinators/@bind=data.id;/@bind=data.name;/saltLevel",

 "message": "{\"saltLevel\":@bind=data.saltLevel;}",

 "description": "Send salt level."

 },

 {

 "topic": "state/chlorinators/@bind=data.id;/@bind=data.name;/type",

 "message": "{\"type\":@bind=data.type;}",

 "description": "Send type."

 },

 {

 "topic": "state/chlorinators/@bind=data.id;/@bind=data.name;/targetOutput",

 "message": "{\"targetOutput\":@bind=data.targetOutput;}",

 "description": "Send targetOutput."

 },

 {

 "topic":

"state/chlorinators/@bind=data.id;/@bind=data.name;/virtualControllerStatus",

 "message": "{\"virtualControllerStatus\":@bind=data.virtualControllerStatus;}",

 "description": "Send virtualControllerStatus."

 }

]

 },

 {

 "name": "lightGroup",

 "description": "Populate the lightGroup topic",

 "topics": [

 {

 "topic": "state/lightgroups/@bind=data.id;/@bind=data.name;",

 "message":

"{\"id\":@bind=data.id;,\"isOn\":@bind=data.isOn?'\"on\"':'\"off\"';}",

 "description": "Bind 'on'/'off' as a message to the state topic."

 },

 {

 "topic": "state/lightgroups/@bind=data.id;/@bind=data.name;/action",

 "message": "{\"action\":@bind=data.action;}"

 },

 {

 "topic": "state/lightgroups/@bind=data.id;/@bind=data.name;/lightingTheme",

 "message": "{\"lightingTheme\":@bind=data.lightingTheme;}"

 },

 {

 "topic": "state/lightgroups/@bind=data.id;/@bind=data.name;/type",

 "message": "{\"type\":@bind=data.type;}"

 }

Page 718

]

 },

 {

 "name": "pump",

 "description": "Populate the pumps topic",

 "topics": [

 {

 "topic": "state/pumps/@bind=data.id;/@bind=data.name;",

 "message":

"{\"id\":@bind=data.id;,\"isOn\":@bind=data.isOn?'\"on\"':'\"off\"';}",

 "description": "Bind 'on'/'off' as a message to the state topic."

 },

 {

 "topic": "state/pumps/@bind=data.id;/@bind=data.name;/rpm",

 "message": "{\"rpm\":@bind=data.rpm;}"

 },

 {

 "topic": "state/pumps/@bind=data.id;/@bind=data.name;/flow",

 "message": "{\"flow\":@bind=data.flow;}"

 },

 {

 "topic": "state/pumps/@bind=data.id;/@bind=data.name;/watts",

 "message": "{\"watts\":@bind=data.watts;}"

 },

 {

 "topic": "state/pumps/@bind=data.id;/@bind=data.name;/status",

 "message": "{\"status\":@bind=data.status;}"

 }

]

 },

 {

 "name": "chemController",

 "description": "Populate the chemControllers topic",

 "topics": [

 {

 "topic": "state/chemControllers/@bind=data.id;/@bind=data.name;/acidTankLevel",

 "message": "{\"acidTankLevel\":@bind=data.acidTankLevel;}",

 "enabled": false

 },

 {

 "topic": "config/chemControllers/@bind=data.id;/@bind=data.name;/alkalinity",

 "message": "{\"alkalinity\":@bind=data.alkalinity;}"

 },

 {

 "topic":

"config/chemControllers/@bind=data.id;/@bind=data.name;/calciumHardness",

 "message": "{\"calciumHardness\":@bind=data.calciumHardness;}"

 },

 {

 "topic": "config/chemControllers/@bind=data.id;/@bind=data.name;/cyanuricAcid",

 "message": "{\"cyanuricAcid\":@bind=data.cyanuricAcid;}"

 },

 {

 "topic": "state/chemControllers/@bind=data.id;/@bind=data.name;/orpDosingTime",

 "message": "{\"orpDosingTime\":@bind=data.orpDosingTime;}",

 "enabled": false

 },

 {

 "topic": "state/chemControllers/@bind=data.id;/@bind=data.name;/orpLevel",

 "message": "{\"orpLevel\":@bind=data.orpLevel;}"

 },

 {

 "topic": "state/chemControllers/@bind=data.id;/@bind=data.name;/orpSetpoint",

 "message": "{\"orpSetpoint\":@bind=data.orpSetpoint;}"

 },

 {

Page 719

 "topic": "state/chemControllers/@bind=data.id;/@bind=data.name;/orpTankLevel",

 "message": "{\"orpTankLevel\":@bind=data.orpTankLevel;}",

 "enabled": false

 },

 {

 "topic": "state/chemControllers/@bind=data.id;/@bind=data.name;/pHDosingTime",

 "message": "{\"pHDosingTime\":@bind=data.pHDosingTime;}",

 "enabled": false

 },

 {

 "topic": "state/chemControllers/@bind=data.id;/@bind=data.name;/pHLevel",

 "message": "{\"pHLevel\":@bind=data.pHLevel;}"

 },

 {

 "topic": "state/chemControllers/@bind=data.id;/@bind=data.name;/pHSetpoint",

 "message": "{\"pHSetpoint\":@bind=data.pHSetpoint;}"

 },

 {

 "topic": "state/chemControllers/@bind=data.id;/@bind=data.name;/saltLevel",

 "message": "{\"saltLevel\":@bind=data.saltLevel;}"

 },

 {

 "topic":

"state/chemControllers/@bind=data.id;/@bind=data.name;/saturationIndex",

 "message": "{\"saturationIndex\":@bind=data.saturationIndex;}"

 },

 {

 "topic": "state/chemControllers/@bind=data.id;/@bind=data.name;/status",

 "message": "{\"status\":@bind=data.status;}"

 },

 {

 "topic": "state/chemControllers/@bind=data.id;/@bind=data.name;/type",

 "message": "{\"type\":@bind=data.type;}"

 },

 {

 "topic":

"state/chemControllers/@bind=data.id;/@bind=data.name;/virtualControllerStatus",

 "message": "{\"virtualControllerStatus\":@bind=data.virtualControllerStatus;}"

 },

 {

 "topic": "state/chemControllers/@bind=data.id;/@bind=data.name;/alarms/flow",

 "message": "{\"flow\":@bind=data.flow;}"

 },

 {

 "topic": "state/chemControllers/@bind=data.id;/@bind=data.name;/alarms/ph",

 "message": "{\"ph\":@bind=data.ph;}"

 },

 {

 "topic": "state/chemControllers/@bind=data.id;/@bind=data.name;/alarms/orp",

 "message": "{\"orp\":@bind=data.orp;}"

 },

 {

 "topic": "state/chemControllers/@bind=data.id;/@bind=data.name;/alarms/phTank",

 "message": "{\"phTank\":@bind=data.phTank;}",

 "enabled": false

 },

 {

 "topic":

"state/chemControllers/@bind=data.id;/@bind=data.name;/alarms/orpTank",

 "message": "{\"orpTank\":@bind=data.orpTank;}",

 "enabled": false

 },

 {

 "topic":

"state/chemControllers/@bind=data.id;/@bind=data.name;/alarms/probeFault",

 "message": "{\"probeFault\":@bind=data.probeFault;}",

Page 720

 "enabled": false

 },

 {

 "topic":

"state/chemControllers/@bind=data.id;/@bind=data.name;/warnings/waterChemistry",

 "message": "{\"waterChemistry\":@bind=data.waterChemistry;}"

 },

 {

 "topic":

"state/chemControllers/@bind=data.id;/@bind=data.name;/warnings/phLockout",

 "message": "{\"phLockout\":@bind=data.phLockout;}",

 "enabled": false

 },

 {

 "topic":

"state/chemControllers/@bind=data.id;/@bind=data.name;/warnings/phDailLimitReached",

 "message": "{\"phDailLimitReached\":@bind=data.phDailLimitReached;}",

 "enabled": false

 },

 {

 "topic":

"state/chemControllers/@bind=data.id;/@bind=data.name;/warnings/orpDailyLimitReached",

 "message": "{\"orpDailyLimitReached\":@bind=data.orpDailyLimitReached;}",

 "enabled": false

 },

 {

 "topic":

"state/chemControllers/@bind=data.id;/@bind=data.name;/warnings/invalidSetup",

 "message": "{\"invalidSetup\":@bind=data.invalidSetup;}"

 },

 {

 "topic":

"state/chemControllers/@bind=data.id;/@bind=data.name;/warnings/chlorinatorCommError",

 "message": "{\"chlorinatorCommError\":@bind=data.chlorinatorCommError;}",

 "enabled": false

 }

]

 },

 {

 "name": "*",

 "description": "DEFAULT: Sends the entire emitted response.",

 "body": "@bind=data;",

 "enabled": false

 }

]

}

When the first MQTT topic starting with “pool/” is observed, mcsMQTT will create a set of default

devices that represent the dashpanel for the pool controller. These as well as others will appear in the

Association table of mcsMQTT so the additional can also be associated with HS devices if desired. The

Device and Features is shown in Figure 408. If issues exist with the initial creation then remove the pool

topics from mcsMQTT using “pool/#” in the text box on Client tab, Inbound Management section and let

them be created again on the first observation of the pool/ topic.

Page 721

Page 722

Page 723

Figure 408 Pool Controller Default Device and Features

Page 724

Table 14 MQTT Message Predefined Setup

 HS Device MQTT Subscribed HS Device Published Payload PUT

 Topic Published Topic Template

Pool

1

pool/state/circuits/6/pool:isOn

Payload off=0;off VSP

Payload on=1;on VSP

pool/state/circuits/setState {“id”:6,”isOn”:”$$LABEL:”}

PUT /state/circuit/setState {“id”:6,”state”:true}

Pool Heat
Mode

2

pool/state/temps/bodies/1/pool/heatMode:h

eatMode:desc

Gas Heater VSP values
Off=1;Off
Heater=2;Enable

Solar VSP values
Off=1;Off
Heater=2;Enable

pool/state/body/heatMode

{“id”:1, “heatMode”:$$VALUE:}

PUT /state/body/heatMode {“id”:1,”mode”:1}

Spa Heat
Mode

3

pool/state/temps/bodies/2/spa/heatMode:h

heatMode:desc

Gas Heater VSP values
Off=1;Off
Heater=2;Enable

Solar VSP values
Off=1;Off
Heater=2;Enable

pool/state/body/heatMode

{“id”:2,”heatMode”:$$VALUE:}

PUT /state/body/heatMode {“id”:2,”mode”:1}

Air Temp

4

pool/state/temps/air:temp Display Only

Page 725

Pool Temp

5

pool/state/temps/bodies/1/pool/temp:temp Display only

Spa Temp

6

pool/state/temps/bodies/2/spa/temp:temp Display only

Pool Setpoint

7

pool/state/temps/bodies/1/pool/setPoint:set

Point

pool/state/body/setPoint {“id”:1,”setPoint”:$$VALUE:}

PUT /state/body/setPoint {“id”:1,”setPoint”:76}

Spa Setpoint

8

pool/state/temps/bodies/2/spa/setPoint:setP
oint

pool/state/body/setPoint {“id”:2,”setPoint”:$$VALUE:}

PUT /state/body/setPoint {“id”:2,”setPoint”:71}

Heat Status
Pool

9

pool/state/temps/bodies/1/pool/heatStatus:

heatStatus:desc

Display only

Heat Status
Spa

9.1

pool/state/temps/bodies/2/spa/heatStatus:h

eatStatus:desc

Display only

Spa

10

pool/state/circuits/1/spa:isOn pool/state/circuits/setState {“id”:1,”isOn”:”$$LABEL:”} PUT /state/circuit/setState {“id”:1,”state”:true}

Aux 1

11

pool/state/circuits/2/aux1:isOn pool/state/circuits/setState {“id”:2,”isOn”:”$$LABEL:”} PUT /state/circuit/setState {“id”:2,”state”:true}

Aux 2

12

pool/state/circuits/3/aux2:isOn pool/state/circuits/setState

{“id”:3,”isOn”:”$$LABEL:”} PUT /state/circuit/setState {“id”:3,”state”:true}

Aux 3

13

pool/state/circuits/4/aux3:isOn

pool/state/circuits/setState {“id”:4,”isOn”:”$$LABEL:”} PUT /state/circuit/setState {“id”:4,”state”:true}

Aux 4

14

pool/state/circuits/5/aux4:isOn pool/state/circuits/setState {“id”:5,”isOn”:”$$LABEL:”} PUT /state/circuit/setState {“id”:5,”state”:true}

Aux 5 pool/state/circuits/7/aux5:isOn pool/state/circuits/setState {“id”:7, “isOn”:”$$LABEL:”} PUT /state/circuit/setState {“id”:7,”state”:true}

Page 726

15

Aux6

16

pool/state/circuits/8/aux6:isOn pool/state/circuits/setState {“id”:8,”isOn”:”$$LABEL:”} PUT /state/circuit/setState {“id”:8,”state”:true}

Aux7

17

pool/state/circuits/9/aux7:isOn pool/state/circuits/setState {“id”:9,”isOn”:”$$LABEL:”} PUT /state/circuit/setState {“id”:9,”state”:true}

 New Equipment - IntelliCenter

Aux 8

Intellicenter

pool/state/circuits/10/aux8:isOn

pool/state/circuits/setState {"id":10,"isOn":"$$LABEL:"}

Aux 9

Intellicenter

pool/state/circuits/11/aux9:isOn pool/state/circuits/setState {“id”:11,”isOn”:”$$LABEL:”}

 New Equipment - IntelliCenter

Feature 1

Intellicenter

pool/state/features/129/feature1:isOn pool/state/features/setState {"id":129,"isOn":"$$LABEL:"}

Feature 2

Intellicenter

pool/state/features/130/feature2:isOn pool/state/features/setState {"id":130,"isOn":"$$LABEL:"}

Feature 3

Intellicenter

pool/state/features/131/feature3:isOn pool/state/features/setState {"id":131,"isOn":"$$LABEL:"}

Feature 4

Intellicenter

pool/state/features/132/feature4:isOn pool/state/features/setState {"id":132,"isOn":"$$LABEL:"}

Feature 5

Intellicenter

pool/state/features/133/feature5:isOn pool/state/features/setState {"id":133,"isOn":"$$LABEL:"}

Feature 6

Intellicenter

pool/state/features/134/feature6:isOn pool/state/features/setState {"id":134,"isOn":"$$LABEL:"}

Feature 7 pool/state/features/135/feature7:isOn pool/state/features/setState {"id":135,"isOn":"$$LABEL:"}

Page 727

Intellicenter

Feature 8

Intellicenter

pool/state/features/136/feature8:isOn pool/state/features/setState {"id":136,"isOn":"$$LABEL:"}

Feature 9

Intellicenter

pool/state/features/137/feature9:isOn pool/state/features/setState {"id":137,"isOn":"$$LABEL:"}

 Original Equipment - EasyTouch

Feature 1

EasyTouch

18

pool/state/features/11/feature1:isOn pool/state/features/setState {“id”:11,”isOn”:”$$LABEL:”}

PUT /state/circuit/setState {“id”:11,”state”:true}

Feature 2

19

pool/state/features/12/feature2:isOn pool/state/features/setState {“id”:12,”isOn”:”$$LABEL:”}

PUT /state/circuit/setState {“id”:12,”state”:true}

Feature 3

20

pool/state/features/13/feature3:isOn pool/state/features/setState {“id”:13,”isOn”:”$$LABEL:”}

PUT /state/circuit/setState {“id”:13,”state”:true}

Feature 4

21

pool/state/features/14/feature4:isOn pool/state/features/setState {“id”:14,”isOn”:”$$LABEL:”}

PUT /state/circuit/setState {“id”:14,”state”:true}

Feature 5

22

pool/state/features/15/feature5:isOn pool/state/features/setState {“id”:15, “isOn”:”$$LABEL:”} PUT /state/circuit/setState {“id”:15,”state”:true}

Feature 6

23

pool/state/features/16/feature6:isOn pool/state/features/setState {“id”:16,”isOn”:”$$LABEL:”}

PUT /state/circuit/setState {“id”:16,”state”:true}

Feature 7

24

pool/state/features/17/feature7:isOn pool/state/features/setState {“id”:17,”isOn”:”$$LABEL:”}

PUT /state/circuit/setState {“id”:17,”state”:true}

Feature 8

25

pool/state/features/18/feature8:isOn pool/state/features/setState {“id”:18,”isOn”:”$$LABEL:”}

PUT /state/circuit/setState {“id”:18,”state”:true}

Aux Extra

26

pool/state/features/20/auxextra:isOn pool/state/features/setState {“id”:20,”isOn”:”$$LABEL:”} PUT /state/circuit/setState {“id”:20,”state”:true}

Page 728

Salt Level

27

pool/state/chlorinators/1/intellichlor--
40/saltLevel:saltLevel

Display only

PH Level

28

EasyTouch

pool/state/chemControllers/1/chemcontrolle
r1/alarms/ph:level

IntelliCenter

pool/state/chemControllers/1/chemcontrolle
r1/pHLevel:pHLevel

poolController v6.5.2 next

pool/state/chemControllers/1/chemcontrolle
r1/ph/level

Display only

ORP Level

29

EasyTouch

pool/state/chemControllers/1/chemcontrolle
r1/alarms/orp:level

IntelliCenter

pool/state/chemControllers/1/chemcontrolle
r1/orpLevel:orpLevel

poolController v6.5.2 next

pool/state/chemControllers/1/chemcontrolle

r1/orp/level

Display only

PH Setpoint

EasyTouch

30

pool/state/chemControllers/1/chemcontrolle
r1/alarms/ph:setpoint

pool/state/chemController

{"id":1,"ph":{"setpoint":$$VALUE:}

PUT /state/chemController
{“id”:1,”ph”:{“setpoint”:7.5},”orp”:{“setpoint”:720},”al
kalinity”:25,”calciumHardness”:25,”cyanuricAcid”:0,”s
aturationIndex”:”-1.0”}

PH setpoint

IntelliCenter

pool/state/chemControllers/1/chemcontrolle
r1/ph/setpoint

or

pool/state/chemControllers/1/chemcontrolle
r1/pHSetpoint:pHSetpoint

pool/state/chemController

{"id":1,"ph":{"setpoint":$$VALUE:}

Orp setpoint

31

EasyTouch

pool/state/chemControllers/1/chemcontrolle

pool/state/chemController {"id":1,"orp":{"setpoint":$$VALUE:} PUT /state/chemController
{“id”:1,”ph”:{“setpoint”:7.4},”orp”:{“setpoint”:730},”
alkalinity”:25,”calciumHardness”:25,”cyanuricAcid”:0,

Page 729

r1/alarms/orp:setpoint

IntelliCenter

pool/state/chemControllers/1/chemcontrolle
r1/orp/setpoint

or

pool/state/chemControllers/1/chemcontrolle
r1/orpSetpoint:orpSetpoint

poolController v6.5.2 next

pool/state/chemControllers/1/chemcontrolle
r1/orp/setpoint

”saturationIndex”:”-1.0”}

Chlorinator
Pool
Setpoint
32

pool/state/chlorinators/1/intellichlor--
40/poolSetpoint:poolSetpoint

pool/state/chlorinator

{"id":1,"poolSetpoint":$$VALUE:}

PUT /state/chlorinator/poolSetpoint
{“id”:1,”setPoint”:95}

Chlorinator
Spa Setpoint

33

pool/state/chlorinators/1/intellichlor--
40/spaSetpoint:spaSetpoint

pool/state/chlorinator

{"id":1,"spaSetpoint":$$VALUE:}

PUT /state/chlorinator/spaSetpoint
{“id”:1,”setPoint”:7}

Chlorinator
Current
Output
34

pool/state/chlorinators/1/intellichlor--
40/currentOutput:currentOutput

Display only

Chlorinator
SuperChlor
35

pool/state/chlorinators/1/intellichlor--
40/superChlor:superChlor

pool/state/chlorinator {"id":1,"superChlorinate":$$VALUE:}

PUT /state/chlorinator/superChlorinate
{“id”:1,”superChlorinate”:true}

Chlorinator
Super
ChlorHours
36

pool/state/chlorinators/1/intellichlor--
40/superChlorHours:superChlorHours

pool/state/chlorinator

or

pool/config/chlorinator

{"id":1,"superChlorHours":$$VALUE:}

PUT /state/chlorinator/superChlorHours
{“id”:1,”hours”:2}

Intellibrite
Themes
37

EasyTouch

pool/state/lightgroups/192/intellibrite/lightin
gTheme:lightingTheme:name

Payload off=0;off VSP
Payload on=1;on VSP
Payload thumper=208;thumper VSP

pool/state/circuit/setTheme EasyTouch

{“id”:192,”theme”:$$VALUE:}

IntelliCenter

EasyTouch

PUT /state/circuit/setTheme {“id”:192,”theme”:128}

IntelliCenter

Page 730

Payload hold=209;hold VSP
Payload reset=210;reset VSP
Payload mode=211;mode VSP
Payload colorsync=128;colorsync VSP
Payload colorswim=144;colorswim VSP
Payload unknown=254;unknown VSP
Payload colorset=160;colorset VSP
Payload party=177;party VSP
Payload romance=178;romance VSP
Payload carribean=179;carribean VSP
Payload american=180;american VSP
Payload sunset=181;sunset VSP
Payload royal=182;royal VSP
Payload save=190;save VSP
Payload recall=191;recall VSP
Payload blue=193;blue VSP
Payload green=194;green VSP
Payload red=195;red VSP
Payload white=196;white VSP
Payload magenta=197;magenta VSP
Payload none=198;none VSP

IntelliCenter

pool/state/circuits/5/poollight/lightingTheme

:lightingTheme:desc

White = 0
Green = 1
Blue = 2
Magenta = 3
Red = 4
Sam mode = 5
Party = 6
Romance = 7
Carribean = 8
American = 9
Sunset = 10
Royal = 11

{“id”:5,”theme”:$$VALUE:}

PUT /state/circuit/setTheme {"id":5,"theme":2}

Pump
Watts
38

EasyTouch

pool/state/pumps/1/intelliflovs/watts:watts

IntelliCenter

Display only

Page 731

pool/state/pumps/1/vs/watts:watts

Pump
RPM
39

EasyTouch

pool/state/pumps/1/intelliflovs/rpm:rpm

IntelliCenter

pool/state/pumps/1/vs/rpm:rpm

Display only

HS Device MQTT Subscribed Topic HS Device Published Topic Published Payload Template PUT

Pool

1

pool/state/circuits/6/pool:isOn

Payload off=0;off VSP

Payload on=1;on VSP

pool/state/circuits/setState {“id”:6,”isOn”:”$$LABEL:”}

PUT /state/circuit/setState {“id”:6,”state”:true}

Pool Heat
Mode

2

pool/state/temps/bodies/1/pool/heatMode:h

eatMode:desc

Gas Heater VSP values
Off=1;Off
Heater=2;Enable

Solar VSP values
Off=1;Off
Heater=3;Enable

pool/state/body/heatMode

{“id”:1, “heatMode”:$$VALUE:}

PUT /state/body/heatMode {“id”:1,”mode”:1}

Spa Heat
Mode

3

pool/state/temps/bodies/2/spa/heatMode:h

eatMode:desc

Gas Heater VSP values
Off=1;Off
Heater=2;Enable

pool/state/body/heatMode

{“id”:2,”heatMode”:$$VALUE:}

PUT /state/body/heatMode {“id”:2,”mode”:1}

Page 732

Solar VSP values
Off=1;Off
Heater=3;Enable

Air Temp

4

pool/state/temps/air:temp Display Only

Pool Temp

5

pool/state/temps/bodies/1/pool/temp:temp Display only

Spa Temp

6

pool/state/temps/bodies/2/spa/temp:temp Display only

Pool Setpoint

7

pool/state/temps/bodies/1/pool/setPoint:set

Point

pool/state/body/setPoint {“id”:1,”setPoint”:$$VALUE:}

PUT /state/body/setPoint {“id”:1,”setPoint”:76}

Spa Setpoint

8

pool/state/temps/bodies/2/spa/setPoint:setP
oint

pool/state/body/setPoint {“id”:2,”setPoint”:$$VALUE:}

PUT /state/body/setPoint {“id”:2,”setPoint”:71}

Heat Status
Pool

9

pool/state/temps/bodies/1/pool/heatStatus:

heatStatus:desc

Display only

Heat Status
Spa

9.1

pool/state/temps/bodies/2/spa/heatStatus:h

eatStatus:desc

Display only

Spa

10

pool/state/circuits/1/spa:isOn pool/state/circuits/setState {“id”:1,”isOn”:”$$LABEL:”} PUT /state/circuit/setState {“id”:1,”state”:true}

Aux 1

11

pool/state/circuits/2/aux1:isOn pool/state/circuits/setState {“id”:2,”isOn”:”$$LABEL:”} PUT /state/circuit/setState {“id”:2,”state”:true}

Aux 2

12

pool/state/circuits/3/aux2:isOn pool/state/circuits/setState

{“id”:3,”isOn”:”$$LABEL:”} PUT /state/circuit/setState {“id”:3,”state”:true}

Aux 3 pool/state/circuits/4/aux3:isOn

pool/state/circuits/setState {“id”:4,”isOn”:”$$LABEL:”} PUT /state/circuit/setState {“id”:4,”state”:true}

Page 733

13

Aux 4

14

pool/state/circuits/5/aux4:isOn pool/state/circuits/setState {“id”:5,”isOn”:”$$LABEL:”} PUT /state/circuit/setState {“id”:5,”state”:true}

Aux 5

15

pool/state/circuits/7/aux5:isOn pool/state/circuits/setState {“id”:7, “isOn”:”$$LABEL:”} PUT /state/circuit/setState {“id”:7,”state”:true}

Aux6

16

pool/state/circuits/8/aux6:isOn pool/state/circuits/setState {“id”:8,”isOn”:”$$LABEL:”} PUT /state/circuit/setState {“id”:8,”state”:true}

Aux7

17

pool/state/circuits/9/aux7:isOn pool/state/circuits/setState {“id”:9,”isOn”:”$$LABEL:”} PUT /state/circuit/setState {“id”:9,”state”:true}

Aux 8

Intellicenter

pool/state/circuits/10/aux8:isOn

pool/state/circuits/setState {"id":10,"isOn":"$$LABEL:"}

Aux 9

Intellicenter

pool/state/circuits/11/aux9:isOn pool/state/circuits/setState {“id”:11,”isOn”:”$$LABEL:”}

Feature 1

Intellicenter

pool/state/features/129/feature1:isOn pool/state/features/setState {"id":129,"isOn":"$$LABEL:"}

Feature 2

Intellicenter

pool/state/features/130/feature2:isOn pool/state/features/setState {"id":130,"isOn":"$$LABEL:"}

Feature 3

Intellicenter

pool/state/features/131/feature3:isOn pool/state/features/setState {"id":131,"isOn":"$$LABEL:"}

Feature 4

Intellicenter

pool/state/features/132/feature4:isOn pool/state/features/setState {"id":132,"isOn":"$$LABEL:"}

Feature 5

Intellicenter

pool/state/features/133/feature5:isOn pool/state/features/setState {"id":133,"isOn":"$$LABEL:"}

Feature 6

Intellicenter

pool/state/features/134/feature6:isOn pool/state/features/setState {"id":134,"isOn":"$$LABEL:"}

Page 734

Feature 7

Intellicenter

pool/state/features/135/feature7:isOn pool/state/features/setState {"id":135,"isOn":"$$LABEL:"}

Feature 8

Intellicenter

pool/state/features/136/feature8:isOn pool/state/features/setState {"id":136,"isOn":"$$LABEL:"}

Feature 9

Intellicenter

pool/state/features/137/feature9:isOn pool/state/features/setState {"id":137,"isOn":"$$LABEL:"}

Feature 1

EasyTouch

18

pool/state/features/11/feature1:isOn pool/state/features/setState {“id”:11,”isOn”:”$$LABEL:”}

PUT /state/circuit/setState {“id”:11,”state”:true}

Feature 2

19

pool/state/features/12/feature2:isOn pool/state/features/setState {“id”:12,”isOn”:”$$LABEL:”}

PUT /state/circuit/setState {“id”:12,”state”:true}

Feature 3

20

pool/state/features/13/feature3:isOn pool/state/features/setState {“id”:13,”isOn”:”$$LABEL:”}

PUT /state/circuit/setState {“id”:13,”state”:true}

Feature 4

21

pool/state/features/14/feature4:isOn pool/state/features/setState {“id”:14,”isOn”:”$$LABEL:”}

PUT /state/circuit/setState {“id”:14,”state”:true}

Feature 5

22

pool/state/features/15/feature5:isOn pool/state/features/setState {“id”:15, “isOn”:”$$LABEL:”} PUT /state/circuit/setState {“id”:15,”state”:true}

Feature 6

23

pool/state/features/16/feature6:isOn pool/state/features/setState {“id”:16,”isOn”:”$$LABEL:”}

PUT /state/circuit/setState {“id”:16,”state”:true}

Feature 7

24

pool/state/features/17/feature7:isOn pool/state/features/setState {“id”:17,”isOn”:”$$LABEL:”}

PUT /state/circuit/setState {“id”:17,”state”:true}

Feature 8

25

pool/state/features/18/feature8:isOn pool/state/features/setState {“id”:18,”isOn”:”$$LABEL:”}

PUT /state/circuit/setState {“id”:18,”state”:true}

Aux Extra

26

pool/state/features/20/auxextra:isOn pool/state/features/setState {“id”:20,”isOn”:”$$LABEL:”} PUT /state/circuit/setState {“id”:20,”state”:true}

Page 735

Salt Level

27

pool/state/chlorinators/1/intellichlor--
40/saltLevel:saltLevel

Display only

PH Level

28

EasyTouch

pool/state/chemControllers/1/chemcontrolle
r1/alarms/ph:level

IntelliCenter

pool/state/chemControllers/1/intellichem1/p
HLevel:pHLevel

Display only

ORP Level

29

EasyTouch

pool/state/chemControllers/1/chemcontrolle
r1/alarms/orp:level

IntelliCenter

pool/state/chemControllers/1/intellichem1/o
rpLevel:orpLevel

Display only

PH Setpoint

EasyTouch

30

pool/state/chemControllers/1/chemcontrolle
r1/alarms/ph:setpoint

pool/state/chemController

{"id":1,"ph":{"setpoint":$$VALUE:}

**2

PUT /state/chemController

{“id”:1,”ph”:{“setpoint”:7.5},”orp”:{“setpoint”:720},”al

kalinity”:25,”calciumHardness”:25,”cyanuricAcid”:0,”s

aturationIndex”:”-1.0”}

PH setpoint

IntelliCenter

pool/state/chemControllers/1/intellichem1/p
HSetpoint:pHSetpoint

pool/state/chemController

{"id":1,"ph":{"setpoint":$$VALUE:}

**2

Orp setpoint

31

EasyTouch

pool/state/chemControllers/1/chemcontrolle
r1/alarms/orp:setpoint

IntelliCenter

pool/state/chemControllers/1/intellichem1/o
rpSetpoint:orpSetpoint

pool/state/chemController {"id":1,"orp":{"setpoint":$$VALUE:}

**2

PUT /state/chemController
{“id”:1,”ph”:{“setpoint”:7.4},”orp”:{“setpoint”:730},”
alkalinity”:25,”calciumHardness”:25,”cyanuricAcid”:0,
”saturationIndex”:”-1.0”}

PM] info: [12:49:35 PM] 192.168.0.128 PUT
/state/chemController
{"id":1,"ph":{"setpoint":7.3,"dailyVolumeDosed":null},
"orp":{"setpoint":730,"dailyVolumeDosed":null},"alkali
nity":25,"calciumHardness":25,"cyanuricAcid":0,"satur
ationIndex":"-1.0"}

Chlorinator
Pool

pool/state/chlorinators/1/intellichlor-- pool/state/chlorinator

{"id":1,"poolSetpoint":$$VALUE:} PUT /state/chlorinator/poolSetpoint

Page 736

Setpoint
32

40/poolSetpoint:poolSetpoint {“id”:1,”setPoint”:95}

Chlorinator
Spa Setpoint

33

pool/state/chlorinators/1/intellichlor--
40/spaSetpoint:spaSetpoint

pool/state/chlorinator

{"id":1,"spaSetpoint":$$VALUE:}

PUT /state/chlorinator/spaSetpoint
{“id”:1,”setPoint”:7}

Chlorinator
Current
Output
34

pool/state/chlorinators/1/intellichlor--
40/currentOutput:currentOutput

Display only

Chlorinator
SuperChlor
35

pool/state/chlorinators/1/intellichlor--
40/superChlor:superChlor

pool/state/chlorinator {"id":1,"superChlorinate":$$VALUE:}

**1

PUT /state/chlorinator/superChlorinate

{“id”:1,”superChlorinate”:true}

Chlorinator
Super
ChlorHours
36

pool/state/chlorinators/1/intellichlor--
40/superChlorHours:superChlorHours

pool/state/chlorinator {"id":1,"superChlorHours":$$VALUE:}

PUT /state/chlorinator/superChlorHours
{“id”:1,”hours”:2}

Intellibrite
Themes
37

EasyTouch

pool/state/lightgroups/192/intellibrite/lightin
gTheme:lightingTheme:name

Payload off=0;off VSP
Payload on=1;on VSP
Payload thumper=208;thumper VSP
Payload hold=209;hold VSP
Payload reset=210;reset VSP
Payload mode=211;mode VSP
Payload colorsync=128;colorsync VSP
Payload colorswim=144;colorswim VSP
Payload unknown=254;unknown VSP
Payload colorset=160;colorset VSP
Payload party=177;party VSP
Payload romance=178;romance VSP
Payload carribean=179;carribean VSP
Payload american=180;american VSP
Payload sunset=181;sunset VSP
Payload royal=182;royal VSP
Payload save=190;save VSP
Payload recall=191;recall VSP
Payload blue=193;blue VSP
Payload green=194;green VSP
Payload red=195;red VSP
Payload white=196;white VSP

pool/state/circuit/setTheme EasyTouch

{“id”:192,”theme”:$$VALUE:}

IntelliCenter

{“id”:5,”theme”:$$VALUE:}

EasyTouch

PUT /state/circuit/setTheme {“id”:192,”theme”:128}

IntelliCenter

PUT /state/circuit/setTheme {"id":5,"theme":2}

Page 737

Payload magenta=197;magenta VSP
Payload none=198;none VSP

IntelliCenter

pool/state/circuits/5/poollight/lightingTheme

:lightingTheme:desc

White = 0
Green = 1
Blue = 2
Magenta = 3
Red = 4
Sam mode = 5
Party = 6
Romance = 7
Carribean = 8
American = 9
Sunset = 10
Royal = 11

Pump
Watts
38

EasyTouch

pool/state/pumps/1/intelliflovs/watts:watts

IntelliCenter

pool/state/pumps/1/vs/watts:watts

Display only

Pump
RPM
39

EasyTouch

pool/state/pumps/1/intelliflovs/rpm:rpm

IntelliCenter

pool/state/pumps/1/vs/rpm:rpm

Display only

 **1 Chlorinator Commands

 Friend Function ChlorinatorCommand(ByVal oMQTT As MqttReport, ByVal nValue As Double) As Boolean
 'return true if command was already sent
 With oMQTT
 If InStrRev(.Source, "superChlorHours") > 0 Then
 Dim sPayload As String = "{""id"":1,""superChlorHours"":" & nValue.ToString & "}"
 If oMQTTClient(.Broker) Is Nothing Then

Page 738

 Return True
 End If
 Dim sTopic As String = .Topic
 Dim oMQTT2 As New MqttReport
 Dim sTopic2 As String
 Dim sPayloadOff As String
 Dim sPayloadOn As String
 If MQTTReceiveDictionary.TryGetValue("pool/state/chlorinators/1/intellichlor--40/superChlor:superChlor", oMQTT2) Then
 sTopic2 = oMQTT2.Topic
 sPayloadOff = ExpandedPayload(ZERO, oMQTT2, "")
 sPayloadOff = ExpandedPayload(oMQTT2.Template, oMQTT2, "", False, ZERO)
 sPayloadOn = ExpandedPayload(oMQTT2.Template, oMQTT2, "", False, ONE)
 Else
 sTopic2 = "pool/state/chlorinator"
 sPayloadOn = "{""id"":1,""superChlorinate"":""on""}"
 sPayloadOff = "{""id"":1,""superChlorinate"":""off""}"
 End If
 If nValue > 0.0 Then
 StatPublish(sTopic, sPayload, .History)
 oMQTTClient(.Broker).Publish(sTopic, Encoding.UTF8.GetBytes(sPayload), .QOS, .Retain)
 StatPublish(sTopic2, sPayloadOn, .History)
 oMQTTClient(.Broker).Publish(sTopic2, Encoding.UTF8.GetBytes(sPayloadOn), .QOS, .Retain)
 Else
 sPayload = ExpandedPayload(nValue.ToString, oMQTT, "")
 StatPublish(sTopic, sPayload, .History)
 oMQTTClient(.Broker).Publish(sTopic, Encoding.UTF8.GetBytes(sPayload), .QOS, .Retain)
 StatPublish(sTopic2, sPayloadOff, .History)
 oMQTTClient(.Broker).Publish(sTopic2, Encoding.UTF8.GetBytes(sPayloadOff), .QOS, .Retain)
 End If
 Return True
 End If
 Return False
 End With
 End Function

Page 739

 **2 Chemcontroller Payllod Template

 Private Const EASYTOUCH_PH_SETPOINT_TOPIC As String = "pool/state/chemControllers/1/chemcontroller1/alarms/ph:setpoint"

 Private Const EASYTOUCH_ORP_SETPOINT_TOPIC As String = "pool/state/chemControllers/1/chemcontroller1/alarms/orp:setpoint"

 Private Const INTELLLICENTER_PH_SETPOINT_TOPIC As String = "pool/state/chemControllers/1/chemcontroller1/pHSetpoint:pHSetpoint"

 Private Const INTELLLICENTER_ORP_SETPOINT_TOPIC As String = "pool/state/chemControllers/1/chemcontroller1/orpSetpoint:orpSetpoint"

 Friend Sub ChemControllerPayloadTemplate(oMQTT As MqttReport)

 'populate the MQTT template for ph and orp commands

 If InStr(oMQTT.Source, "chemController") > 0 Then

 Dim arrPayload() As String = {"7.1", "720", "25", "25", "0", "-1.0"}

 Dim arrTopic() As String = {"", ""}

 If gPoolEquipment = PoolEquipment.EasyTouch Then

 arrTopic(0) = EASYTOUCH_PH_SETPOINT_TOPIC

 arrTopic(1) = EASYTOUCH_ORP_SETPOINT_TOPIC

 Else

 arrTopic(0) = INTELLLICENTER_PH_SETPOINT_TOPIC

 arrTopic(1) = INTELLLICENTER_ORP_SETPOINT_TOPIC

 End If

 For i As Integer = 0 To arrTopic.Length - 1

 Dim oMQTT2 As New MqttReport

 Dim sTopic2 As String = arrTopic(i)

 If MQTTReceiveDictionary.TryGetValue(sTopic2, oMQTT2) Then

 If IsNumeric(oMQTT2.Payload) Then

 arrPayload(i) = oMQTT2.Payload

 End If

 End If

 Next

 If InStr(oMQTT.Source, "ph", vbTextCompare) > 0 Then

 oMQTT.Template = "{""id"":1,""ph"":{""setpoint"":" & "$$VALUE:" & "},""orp"":{""setpoint"":" & arrPayload(1) &

"},""alkalinity"":" & arrPayload(2) & ",""calciumHardness"":" & arrPayload(3) & ",""cyanuricAcid"":" & arrPayload(4) &

",""saturationIndex"":""" & arrPayload(5) & """}"

 End If

 If InStr(oMQTT.Source, "orp") > 0 Then

 oMQTT.Template = "{""id"":1,""ph"":{""setpoint"":" & arrPayload(0) & "},""orp"":{""setpoint"":" & "$$VALUE:" &

"},""alkalinity"":" & arrPayload(2) & ",""calciumHardness"":" & arrPayload(3) & ",""cyanuricAcid"":" & arrPayload(4) &

",""saturationIndex"":""" & arrPayload(5) & """}"

 End If

 End If

 End Sub

Page 740

23 IP Relay – Ethernet, WiFi, RS-485, CAN (Dingtian)

There is a very attractive product from China that provides relay control and digital input reporting via

wired ethernet or WiFi as well as product variants of RS-485 and CAN when WiFi is not needed. The

pricing is interesting with the 8-channel being the lowest cost at $14.25 and 4 and 8 channel at slightly

higher price when a smaller form factor is desired. I obtained the 2-channel version for evaluation. The

case is also nice with strong plastic and DIN rail capability.

https://www.aliexpress.com/item/4000999069820.html?spm=a2g0o.detail.1000060.1.49bb7aafhc4Ke

m&gps-

id=pcDetailBottomMoreThisSeller&scm=1007.13339.169870.0&scm_id=1007.13339.169870.0&scm-

url=1007.13339.169870.0&pvid=ebd8ac2d-a04f-4b4d-abd2-97afe5b420e0&_t=gps-

id:pcDetailBottomMoreThisSeller,scm-url:1007.13339.169870.0,pvid:ebd8ac2d-a04f-4b4d-abd2-

97afe5b420e0,tpp_buckets:668%232846%238116%232002&&pdp_ext_f=%7B%22sceneId%22:%22333

9%22,%22sku_id%22:%2210000013555389040%22%7D

The firmware is very capable and comes with much documentation at http://www.dingtian-

tech.com/sdk/relay_sdk.zip Sample programs are given, interface with HA platform Domoticz, and

multiple interface protocols supported including MQTT.

Figure 409 Dingtian IP Relay/Input/WiFi/RS-485/CAN Product Listing

I was not able to get a response from my device so I contacted supplier via email. Response came that

evening showing how to do factory reset and offer for WhatApp or TeamViewer as more immediate

ways that they could provide support.

The setup is via browser at default IP 192.168.1.1 admin/admin login credentials. The IP can then be

changed to match your network. The MQTT setup is done on the Relay Connect tab of the browser

menu where th MQTT Broker Address is entered and login credential to Broker if needed. See Figure

410. There is also a Keep Alive setting on the page that comes default at 30 seconds. The Keep Alive

results in period status reporting at the specified interval. In my case I desired only event reporting so

set it to 0.

https://www.aliexpress.com/item/4000999069820.html?spm=a2g0o.detail.1000060.1.49bb7aafhc4Kem&gps-id=pcDetailBottomMoreThisSeller&scm=1007.13339.169870.0&scm_id=1007.13339.169870.0&scm-url=1007.13339.169870.0&pvid=ebd8ac2d-a04f-4b4d-abd2-97afe5b420e0&_t=gps-id:pcDetailBottomMoreThisSeller,scm-url:1007.13339.169870.0,pvid:ebd8ac2d-a04f-4b4d-abd2-97afe5b420e0,tpp_buckets:668%232846%238116%232002&&pdp_ext_f=%7B%22sceneId%22:%223339%22,%22sku_id%22:%2210000013555389040%22%7D
https://www.aliexpress.com/item/4000999069820.html?spm=a2g0o.detail.1000060.1.49bb7aafhc4Kem&gps-id=pcDetailBottomMoreThisSeller&scm=1007.13339.169870.0&scm_id=1007.13339.169870.0&scm-url=1007.13339.169870.0&pvid=ebd8ac2d-a04f-4b4d-abd2-97afe5b420e0&_t=gps-id:pcDetailBottomMoreThisSeller,scm-url:1007.13339.169870.0,pvid:ebd8ac2d-a04f-4b4d-abd2-97afe5b420e0,tpp_buckets:668%232846%238116%232002&&pdp_ext_f=%7B%22sceneId%22:%223339%22,%22sku_id%22:%2210000013555389040%22%7D
https://www.aliexpress.com/item/4000999069820.html?spm=a2g0o.detail.1000060.1.49bb7aafhc4Kem&gps-id=pcDetailBottomMoreThisSeller&scm=1007.13339.169870.0&scm_id=1007.13339.169870.0&scm-url=1007.13339.169870.0&pvid=ebd8ac2d-a04f-4b4d-abd2-97afe5b420e0&_t=gps-id:pcDetailBottomMoreThisSeller,scm-url:1007.13339.169870.0,pvid:ebd8ac2d-a04f-4b4d-abd2-97afe5b420e0,tpp_buckets:668%232846%238116%232002&&pdp_ext_f=%7B%22sceneId%22:%223339%22,%22sku_id%22:%2210000013555389040%22%7D
https://www.aliexpress.com/item/4000999069820.html?spm=a2g0o.detail.1000060.1.49bb7aafhc4Kem&gps-id=pcDetailBottomMoreThisSeller&scm=1007.13339.169870.0&scm_id=1007.13339.169870.0&scm-url=1007.13339.169870.0&pvid=ebd8ac2d-a04f-4b4d-abd2-97afe5b420e0&_t=gps-id:pcDetailBottomMoreThisSeller,scm-url:1007.13339.169870.0,pvid:ebd8ac2d-a04f-4b4d-abd2-97afe5b420e0,tpp_buckets:668%232846%238116%232002&&pdp_ext_f=%7B%22sceneId%22:%223339%22,%22sku_id%22:%2210000013555389040%22%7D
https://www.aliexpress.com/item/4000999069820.html?spm=a2g0o.detail.1000060.1.49bb7aafhc4Kem&gps-id=pcDetailBottomMoreThisSeller&scm=1007.13339.169870.0&scm_id=1007.13339.169870.0&scm-url=1007.13339.169870.0&pvid=ebd8ac2d-a04f-4b4d-abd2-97afe5b420e0&_t=gps-id:pcDetailBottomMoreThisSeller,scm-url:1007.13339.169870.0,pvid:ebd8ac2d-a04f-4b4d-abd2-97afe5b420e0,tpp_buckets:668%232846%238116%232002&&pdp_ext_f=%7B%22sceneId%22:%223339%22,%22sku_id%22:%2210000013555389040%22%7D
https://www.aliexpress.com/item/4000999069820.html?spm=a2g0o.detail.1000060.1.49bb7aafhc4Kem&gps-id=pcDetailBottomMoreThisSeller&scm=1007.13339.169870.0&scm_id=1007.13339.169870.0&scm-url=1007.13339.169870.0&pvid=ebd8ac2d-a04f-4b4d-abd2-97afe5b420e0&_t=gps-id:pcDetailBottomMoreThisSeller,scm-url:1007.13339.169870.0,pvid:ebd8ac2d-a04f-4b4d-abd2-97afe5b420e0,tpp_buckets:668%232846%238116%232002&&pdp_ext_f=%7B%22sceneId%22:%223339%22,%22sku_id%22:%2210000013555389040%22%7D
https://www.aliexpress.com/item/4000999069820.html?spm=a2g0o.detail.1000060.1.49bb7aafhc4Kem&gps-id=pcDetailBottomMoreThisSeller&scm=1007.13339.169870.0&scm_id=1007.13339.169870.0&scm-url=1007.13339.169870.0&pvid=ebd8ac2d-a04f-4b4d-abd2-97afe5b420e0&_t=gps-id:pcDetailBottomMoreThisSeller,scm-url:1007.13339.169870.0,pvid:ebd8ac2d-a04f-4b4d-abd2-97afe5b420e0,tpp_buckets:668%232846%238116%232002&&pdp_ext_f=%7B%22sceneId%22:%223339%22,%22sku_id%22:%2210000013555389040%22%7D
http://www.dingtian-tech.com/sdk/relay_sdk.zip
http://www.dingtian-tech.com/sdk/relay_sdk.zip

Page 741

Figure 410 Dingtian IOT Relay MQTT Configuration

Clicking on the two Relay Test buttons will result in MQTT messages that will be visible on the mcsMQTT

Association tab. Using a jumper wire between Gnd and each of the two digital inputs also results in

MQTT messages. “A”ssociating the appropriate topics produces HS devices. Note the syntax of the Pub

Topic to be able to control the relay in Figure 412. The base Topic is suffixed with /in/r# where # is the

relay number.

Figure 411 Dingtian IOT Relay / Inputs as HS Devices

Page 742

Figure 412 Dingtian IOT Relay MQTT Topics

Page 743

24 WLED Support

WLED is an application targeted for ESP8266 and ESP32 that performs very flexible control of LED light

strips such as WS2811 and WS2812B. The main support page for this firmware is

https://github.com/Aircoookie/WLED/wiki. Supporting pages of interest are

https://github.com/Aircoookie/WLED/wiki/MQTT

https://github.com/Aircoookie/WLED/wiki/HTTP-request-API

https://github.com/Aircoookie/WLED/wiki/JSON-API

There are multiple source for install of the firmware that is available at

https://github.com/Aircoookie/WLED/releases or source at https://github.com/Aircoookie/WLED with

some suggestions at the link to the source.

WLED MQTT default setup contains communications on topic starting with “wled/”. mcsMQTT will

recognize this topic and customize a HS set of devices for control and status of WLED. The default setup

for HS4 /deviceutility is shown in Figure 413. Note that the /c topic is represented in two color spaces.

One is RGB as a color picker and the other as three sliders for Hue, Saturation and Value. Either can be

used and the plugin will keep synchronization with WLED.

Figure 413 Default WLED HS Devices

Staged and ready for HS device creation, if desired, are a number of other end points reported on the

/api topic. The full set is shown in Figure 414.

It is also possible to create other end points based upon the API defined in the links above. In this case

new mcsMQTT device would be created manually from the Edit tab. If any staged device on the

Association tab is to be included as a HS device there may be some edits needed on the Edit tab after

clicking the “a” checkbox. These edits will depend upon the contents of the API schema vs. the initial

guess provided by mcsMQTT.

https://github.com/Aircoookie/WLED/wiki
https://github.com/Aircoookie/WLED/wiki/MQTT
https://github.com/Aircoookie/WLED/wiki/HTTP-request-API
https://github.com/Aircoookie/WLED/wiki/JSON-API
https://github.com/Aircoookie/WLED/releases
https://github.com/Aircoookie/WLED

Page 744

Figure 414 WLED /api topic end points

Support for WLED Segments was added based upon WLED 0.10.0. A segment is a division of a LED strip

into smaller strips that operate relatively independently. This feature of WLED is still somewhat

immature and has some limitations, but basic functionality does exist. I have observed that segment

setup did not persist of power cycle of the WLED controller. A WLED segment setup of two segments is

shown in Figure 415. This is done with browser URL set to the IP of the ESP8266/ESP32 containing the

WLED firmware.

Page 745

Figure 415 WLED Segment Definition

Page 746

Segments are not exposed via MQTT or the XML API interface. They are only visible using the JSON API.

To support segments an additional tab was added to the Local page. For each WLED controller a row

will be present to enter the IP of the controller and to identify how many segments the controller

supports.

Segment 0 is the main segment that contains all LEDs in the strip so the first logical subdivision is 1. A

max of 10 is supported by WLED. Figure 416 shows this Local tab setup.

Figure 416 WLED Setup on Local Page

mcsMQTT will evaluate to align the MQTT-equivalent devices with the segments specified Any time

either of the two Figure 416 fields are edited. The segment index will be added to the topic as shown in

Figure 417. In this example segment 1 and the start of segment 2 are shown.

Page 747

Figure 417 Virtual MQTT Topics for WLED Segments

HS devices are created for each segment. This is shown in Figure 418. The devices created include

On/Off, brightness, color, white channel if appropriate, and effects parameters.

Since segments are not visible via MQTT there is no update of the HS devices except when a segment

parameter is commanded, segment setup is changed or at plugin startup. To force an update then

command a segment of the controller. This command can be no change such as the On/Off device

commanded into the same state as it currently exists.

Page 748

Figure 418 WLED Segments as HS Devices

The “Scrolling Text” special effect has been added to WLED and applies to a WLED 2D configuration in

the LED setup. If this effect is available and IP of the WLED controller is setup on the Local Page, LED

Tab, then mcsMQTT will create a Scrolling Text HS Feature for each WLED segment.

The setup includes some date/time-oriented selections on the control selector. These can be changed

and augmented from the MQTT Page, Edit Tab of the Feature. The initial VSP are shown below where

the payload field (first item) is an inline expression for a date-related function and the next is the text

shown in the selector of the HS Feature. When selected, the function will be evaluated and the text

delivered to the associated WLED segment as a scrolling text effect. mcsMQTT will automatically change

the effect to scrolling text when this HS Feature is used.

 (" "; 0; " ")
 ("<<Now()>>"; 1; "Date-Time")
 ("<<Today()>>"; 2; "Date")
 ("<<Time()>>"; 3; "Time")
 ("<<NameOfDay()>>";4; "WeekDay")

Page 749

The VSP will provide a “preset” capability that can be used from the HS Devices page or can be used as

an Event Action to control a HS Device Feature.

It is also possible to send any text from a HS Event Action using a one-line script where the Feature Ref,

a 0, and the desired text passed to the SendControlForFeatureByString function. The third (text)

parameter can contain replacement variables and inline functions what will be evaluated at time of the

event action.

Figure 419 Event Action to send scrolling text to WLED display

For my evaluation I used a $20 8 x 32 LED panel Amazon.com: BTF-LIGHTING WS2812B ECO RGB Alloy

Wires 5050SMD Individual Addressable 8X32 256 Pixels LED Matrix Flexible FPCB Full Color Works with

K-1000C,SP107E,etc Controllers Image Video Text Display DC5V : Tools & Home Improvement which is

similar to the other messaging signs described in this document. They can be cascaded and tiled for long

or large matrix displays. This means the display can be partitioned into segments with one or more of

the segments doing scrolling text while others are used for other purposes.

https://www.amazon.com/dp/B088BTXHRG?ref=ppx_yo2ov_dt_b_product_details&th=1
https://www.amazon.com/dp/B088BTXHRG?ref=ppx_yo2ov_dt_b_product_details&th=1
https://www.amazon.com/dp/B088BTXHRG?ref=ppx_yo2ov_dt_b_product_details&th=1

Page 750

25 Plex Integration

Tautulli GitHub - Tautulli/Tautulli: A Python based monitoring and tracking tool for Plex Media Server.

provides a MQTT conduit with Plex. The Plex status is reported in a JSON payload containing subject,

body and topic keys. Unfortunately, the body key uses escape-encoding rather than JSON-encoding so

standard means to decode the body cannot be used.

To deal with this mcsMQTT looks for topics starting with “Plex” and a JSON key of “body”. In these

cases, it will discard the subject and topic parts of the payload the reformat the body part to be standard

JSON. When Tautuili is configured, assure that the topic starts with “Plex” to enable this capability.

https://github.com/Tautulli/Tautulli

